新型磁性氧化石墨烯吸附剂对铀的吸附性能研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zijie Chen, Shaorong Huang, Zhen Liu, Qian Wu, Jingjing Liu, Yan Tan, Xilin Xiao
{"title":"新型磁性氧化石墨烯吸附剂对铀的吸附性能研究","authors":"Zijie Chen, Shaorong Huang, Zhen Liu, Qian Wu, Jingjing Liu, Yan Tan, Xilin Xiao","doi":"10.2174/0115734110307561240822094748","DOIUrl":null,"url":null,"abstract":"Background: The problem of nuclear water pollution is becoming serious worldwide. Uranium, as a metal substance with long half-life radioactivity, is commonly treated by various methods. Adsorption is considered to be one of the most promising methods for treating uraniumcontaining wastewater. Method: Magnetic nanoparticles MnFe2O4 were prepared via the coprecipitation method, followed by modification of silica using the improved Stöber method. Subsequently, amino was functionalized and grafted onto graphene oxide to prepare a novel magnetic graphene oxide composite MnFe2O4@SiO2-NH2@GO. Results: The highest adsorption rate of MnFe2O4@SiO2-NH2@GO for uranium can reach 97.27% in 1 mg·L-1 uranium solution, and the adsorption process conformed to the quasi-second-order kinetic model and Langmuir adsorption isotherm model, indicating that it was a monolayer adsorption dominated by chemisorption. The adsorption thermodynamic parameters demonstrated that the adsorption process was a spontaneous endothermic reaction. Conclusion: MnFe2O4@SiO2-NH2@GO had excellent adsorption properties for uranium, which has great application potential in the treatment of low-concentration uranium-containing wastewater.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Adsorption Performance of a Novel Magnetic Graphene Oxide Adsorbent for Uranium\",\"authors\":\"Zijie Chen, Shaorong Huang, Zhen Liu, Qian Wu, Jingjing Liu, Yan Tan, Xilin Xiao\",\"doi\":\"10.2174/0115734110307561240822094748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The problem of nuclear water pollution is becoming serious worldwide. Uranium, as a metal substance with long half-life radioactivity, is commonly treated by various methods. Adsorption is considered to be one of the most promising methods for treating uraniumcontaining wastewater. Method: Magnetic nanoparticles MnFe2O4 were prepared via the coprecipitation method, followed by modification of silica using the improved Stöber method. Subsequently, amino was functionalized and grafted onto graphene oxide to prepare a novel magnetic graphene oxide composite MnFe2O4@SiO2-NH2@GO. Results: The highest adsorption rate of MnFe2O4@SiO2-NH2@GO for uranium can reach 97.27% in 1 mg·L-1 uranium solution, and the adsorption process conformed to the quasi-second-order kinetic model and Langmuir adsorption isotherm model, indicating that it was a monolayer adsorption dominated by chemisorption. The adsorption thermodynamic parameters demonstrated that the adsorption process was a spontaneous endothermic reaction. Conclusion: MnFe2O4@SiO2-NH2@GO had excellent adsorption properties for uranium, which has great application potential in the treatment of low-concentration uranium-containing wastewater.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734110307561240822094748\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115734110307561240822094748","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

背景:核水污染问题在世界范围内日益严重。铀作为一种半衰期放射性较长的金属物质,通常采用各种方法进行处理。吸附法被认为是处理含铀废水最有前途的方法之一。方法:通过共沉淀法制备磁性纳米粒子 MnFe2O4,然后使用改进的 Stöber 法对二氧化硅进行改性。随后,将氨基功能化并接枝到氧化石墨烯上,制备出新型磁性氧化石墨烯复合材料 MnFe2O4@SiO2-NH2@GO。结果:在 1 mg-L-1 的铀溶液中,MnFe2O4@SiO2-NH2@GO 对铀的吸附率最高可达 97.27%,吸附过程符合准二阶动力学模型和 Langmuir 吸附等温线模型,表明这是一种以化学吸附为主的单层吸附。吸附热力学参数表明,吸附过程是一个自发的内热反应。结论MnFe2O4@SiO2-NH2@GO 对铀具有优异的吸附性能,在处理低浓度含铀废水方面具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the Adsorption Performance of a Novel Magnetic Graphene Oxide Adsorbent for Uranium
Background: The problem of nuclear water pollution is becoming serious worldwide. Uranium, as a metal substance with long half-life radioactivity, is commonly treated by various methods. Adsorption is considered to be one of the most promising methods for treating uraniumcontaining wastewater. Method: Magnetic nanoparticles MnFe2O4 were prepared via the coprecipitation method, followed by modification of silica using the improved Stöber method. Subsequently, amino was functionalized and grafted onto graphene oxide to prepare a novel magnetic graphene oxide composite MnFe2O4@SiO2-NH2@GO. Results: The highest adsorption rate of MnFe2O4@SiO2-NH2@GO for uranium can reach 97.27% in 1 mg·L-1 uranium solution, and the adsorption process conformed to the quasi-second-order kinetic model and Langmuir adsorption isotherm model, indicating that it was a monolayer adsorption dominated by chemisorption. The adsorption thermodynamic parameters demonstrated that the adsorption process was a spontaneous endothermic reaction. Conclusion: MnFe2O4@SiO2-NH2@GO had excellent adsorption properties for uranium, which has great application potential in the treatment of low-concentration uranium-containing wastewater.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信