{"title":"考虑静态平衡的纳米混凝土-环氧树脂相互作用面积的分析解决方案","authors":"Md. Foisal Haque","doi":"10.1186/s11671-024-04083-9","DOIUrl":null,"url":null,"abstract":"<div><p>This research proposes an analytical solution of the nano-concrete-epoxy interaction area within nano crack region of the reinforced concrete beam by applying Newton’s third law in static equilibrium. For deriving the governing equation, the imaginary beam with free ends (no support) is considered within nano crack region. This imaginary beam is acted along the imaginary line of concrete-epoxy interface. Newton’s third law is applicable for deriving the governing equation because of assuming the absence of frictional and other external forces. The parametric study is performed for implementing the proposed formula of nano interactive area considering variable nano crack depths and thicknesses. The nano interactive area is increased gradually with the increment of depths and thicknesses based on the parametric study because of linear functionality of interactive area and geometry of nano crack region. The maximum interactive area is found to be 314 nm<sup>2</sup> at 0.6 ratio of depths and thicknesses of the nano crack. The incremental differences in interactive area between the crack depth or thickness ratios of 0.1 and 0.6 are found to be 25.4% and 1.6% for variations of the crack depth and thickness ratios, respectively. So, the crack depth shows higher impact on the interaction area compared to the thickness of the crack. However, there is a scope for enhancing this research in future by deriving closed-formed analytical formulations to consider appropriate boundary conditions.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04083-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Analytical solution of nano-concrete-epoxy interaction area considering static equilibrium\",\"authors\":\"Md. Foisal Haque\",\"doi\":\"10.1186/s11671-024-04083-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research proposes an analytical solution of the nano-concrete-epoxy interaction area within nano crack region of the reinforced concrete beam by applying Newton’s third law in static equilibrium. For deriving the governing equation, the imaginary beam with free ends (no support) is considered within nano crack region. This imaginary beam is acted along the imaginary line of concrete-epoxy interface. Newton’s third law is applicable for deriving the governing equation because of assuming the absence of frictional and other external forces. The parametric study is performed for implementing the proposed formula of nano interactive area considering variable nano crack depths and thicknesses. The nano interactive area is increased gradually with the increment of depths and thicknesses based on the parametric study because of linear functionality of interactive area and geometry of nano crack region. The maximum interactive area is found to be 314 nm<sup>2</sup> at 0.6 ratio of depths and thicknesses of the nano crack. The incremental differences in interactive area between the crack depth or thickness ratios of 0.1 and 0.6 are found to be 25.4% and 1.6% for variations of the crack depth and thickness ratios, respectively. So, the crack depth shows higher impact on the interaction area compared to the thickness of the crack. However, there is a scope for enhancing this research in future by deriving closed-formed analytical formulations to consider appropriate boundary conditions.</p></div>\",\"PeriodicalId\":51136,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s11671-024-04083-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-024-04083-9\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04083-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Analytical solution of nano-concrete-epoxy interaction area considering static equilibrium
This research proposes an analytical solution of the nano-concrete-epoxy interaction area within nano crack region of the reinforced concrete beam by applying Newton’s third law in static equilibrium. For deriving the governing equation, the imaginary beam with free ends (no support) is considered within nano crack region. This imaginary beam is acted along the imaginary line of concrete-epoxy interface. Newton’s third law is applicable for deriving the governing equation because of assuming the absence of frictional and other external forces. The parametric study is performed for implementing the proposed formula of nano interactive area considering variable nano crack depths and thicknesses. The nano interactive area is increased gradually with the increment of depths and thicknesses based on the parametric study because of linear functionality of interactive area and geometry of nano crack region. The maximum interactive area is found to be 314 nm2 at 0.6 ratio of depths and thicknesses of the nano crack. The incremental differences in interactive area between the crack depth or thickness ratios of 0.1 and 0.6 are found to be 25.4% and 1.6% for variations of the crack depth and thickness ratios, respectively. So, the crack depth shows higher impact on the interaction area compared to the thickness of the crack. However, there is a scope for enhancing this research in future by deriving closed-formed analytical formulations to consider appropriate boundary conditions.
期刊介绍:
Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.