Ghada Fatima Zahra Mebarki, Naima Benmostefa, Mohammed Feham, Mohammed Ayad Alkhafaji, Serge Dzo Mawuefa Afenyiveh, Younes Menni
{"title":"千兆赫电磁波宽带柔性超材料吸收器的设计、仿真和实验验证","authors":"Ghada Fatima Zahra Mebarki, Naima Benmostefa, Mohammed Feham, Mohammed Ayad Alkhafaji, Serge Dzo Mawuefa Afenyiveh, Younes Menni","doi":"10.1063/5.0229586","DOIUrl":null,"url":null,"abstract":"This study addresses the challenge of mitigating electromagnetic interference (EMI) in telecommunications and radar systems by designing, simulating, and experimentally validating a wideband flexible metamaterial absorber (MMA) for gigahertz-frequency electromagnetic waves (EMWs). EMI is critical as it can severely impact the performance and reliability of electronic systems. Traditional absorbers often struggle to maintain high performance across a broad frequency range, especially under varying polarization and incidence angles. To address this issue, we developed a novel MMA with a simple, single-layer design optimized for wideband absorption over a 10 GHz frequency range. Constructed with a polyethylene terephthalate dielectric layer separating spiral coil resonators from a bottom copper layer, this configuration ensures polarization insensitivity for both transverse electric and transverse magnetic waves. Numerical simulations were used to optimize the design parameters, focusing on maximizing absorption efficiency across the targeted frequency range and varying incidence angles. Experimental validation was conducted to verify the absorber’s performance, with results showing excellent agreement with simulations. This research underscores the importance of experimental verification in validating the performance of MMAs and highlights their potential for real-world applications in absorbing EMWs.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, simulation, and experimental validation of a wideband flexible metamaterial absorber for gigahertz electromagnetic waves\",\"authors\":\"Ghada Fatima Zahra Mebarki, Naima Benmostefa, Mohammed Feham, Mohammed Ayad Alkhafaji, Serge Dzo Mawuefa Afenyiveh, Younes Menni\",\"doi\":\"10.1063/5.0229586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study addresses the challenge of mitigating electromagnetic interference (EMI) in telecommunications and radar systems by designing, simulating, and experimentally validating a wideband flexible metamaterial absorber (MMA) for gigahertz-frequency electromagnetic waves (EMWs). EMI is critical as it can severely impact the performance and reliability of electronic systems. Traditional absorbers often struggle to maintain high performance across a broad frequency range, especially under varying polarization and incidence angles. To address this issue, we developed a novel MMA with a simple, single-layer design optimized for wideband absorption over a 10 GHz frequency range. Constructed with a polyethylene terephthalate dielectric layer separating spiral coil resonators from a bottom copper layer, this configuration ensures polarization insensitivity for both transverse electric and transverse magnetic waves. Numerical simulations were used to optimize the design parameters, focusing on maximizing absorption efficiency across the targeted frequency range and varying incidence angles. Experimental validation was conducted to verify the absorber’s performance, with results showing excellent agreement with simulations. This research underscores the importance of experimental verification in validating the performance of MMAs and highlights their potential for real-world applications in absorbing EMWs.\",\"PeriodicalId\":7619,\"journal\":{\"name\":\"AIP Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIP Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0229586\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0229586","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Design, simulation, and experimental validation of a wideband flexible metamaterial absorber for gigahertz electromagnetic waves
This study addresses the challenge of mitigating electromagnetic interference (EMI) in telecommunications and radar systems by designing, simulating, and experimentally validating a wideband flexible metamaterial absorber (MMA) for gigahertz-frequency electromagnetic waves (EMWs). EMI is critical as it can severely impact the performance and reliability of electronic systems. Traditional absorbers often struggle to maintain high performance across a broad frequency range, especially under varying polarization and incidence angles. To address this issue, we developed a novel MMA with a simple, single-layer design optimized for wideband absorption over a 10 GHz frequency range. Constructed with a polyethylene terephthalate dielectric layer separating spiral coil resonators from a bottom copper layer, this configuration ensures polarization insensitivity for both transverse electric and transverse magnetic waves. Numerical simulations were used to optimize the design parameters, focusing on maximizing absorption efficiency across the targeted frequency range and varying incidence angles. Experimental validation was conducted to verify the absorber’s performance, with results showing excellent agreement with simulations. This research underscores the importance of experimental verification in validating the performance of MMAs and highlights their potential for real-world applications in absorbing EMWs.
期刊介绍:
AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences.
AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.