Vincent Bos, Jasper Wesselingh, Gerard J. Verbiest, Peter G. Steeneken
{"title":"空气中声学悬浮的主动阻尼","authors":"Vincent Bos, Jasper Wesselingh, Gerard J. Verbiest, Peter G. Steeneken","doi":"10.1063/5.0210800","DOIUrl":null,"url":null,"abstract":"Acoustic levitation is an attractive and versatile technique that offers several advantages in terms of particle size, range, reconfigurability, and ease of use with respect to alternative levitating techniques. In this paper, we study the use of active damping to improve the response time and positioning precision of an acoustic levitator operating in air. We use a laser Doppler vibrometer to measure the velocity of a levitated particle. Using this information, a control algorithm is designed and implemented to provide active damping. By system identification and modeling, we demonstrate that the active damper mechanism is well-predictable by models and can be electronically reconfigured and controlled.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active damping for acoustic levitation in air\",\"authors\":\"Vincent Bos, Jasper Wesselingh, Gerard J. Verbiest, Peter G. Steeneken\",\"doi\":\"10.1063/5.0210800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acoustic levitation is an attractive and versatile technique that offers several advantages in terms of particle size, range, reconfigurability, and ease of use with respect to alternative levitating techniques. In this paper, we study the use of active damping to improve the response time and positioning precision of an acoustic levitator operating in air. We use a laser Doppler vibrometer to measure the velocity of a levitated particle. Using this information, a control algorithm is designed and implemented to provide active damping. By system identification and modeling, we demonstrate that the active damper mechanism is well-predictable by models and can be electronically reconfigured and controlled.\",\"PeriodicalId\":7619,\"journal\":{\"name\":\"AIP Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIP Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0210800\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0210800","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Acoustic levitation is an attractive and versatile technique that offers several advantages in terms of particle size, range, reconfigurability, and ease of use with respect to alternative levitating techniques. In this paper, we study the use of active damping to improve the response time and positioning precision of an acoustic levitator operating in air. We use a laser Doppler vibrometer to measure the velocity of a levitated particle. Using this information, a control algorithm is designed and implemented to provide active damping. By system identification and modeling, we demonstrate that the active damper mechanism is well-predictable by models and can be electronically reconfigured and controlled.
期刊介绍:
AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences.
AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.