Maliheh Shaban Tameh, Wayne L. Gladfelter, Jason D. Goodpaster
{"title":"捻平均耦合簇计算间隙能的高效方法:氧化锡的块体研究","authors":"Maliheh Shaban Tameh, Wayne L. Gladfelter, Jason D. Goodpaster","doi":"10.1063/5.0212542","DOIUrl":null,"url":null,"abstract":"We study the gap energy of the semiconducting oxide SnO2 through ab initio calculations including both density functional theory (DFT) and coupled cluster methods. The effectiveness of twist averaging in reducing finite-size errors is evaluated across different functionals. We report an overestimation of gap energy when applying finite-size scaling to reach the thermodynamic limit in equation-of-motion (EOM) CCSD calculations. To mitigate one-body and many-body errors, we integrate twist averaging with a post-processing correction mechanism that compares finite-size and infinite-size DFT calculations using hybrid functionals. While inspired by the Kwee, Zhang, and Krakauer approach, our method is specifically tailored to hybrid functionals for a more accurate treatment of exchange-correlation effects. Our approach ensures that the many-body interactions are accurately captured in the estimated gap for an infinite system. We introduce unique single twist angles that provide cost-effective and accurate energies compared to to full twist averaging in EOM-CCSD calculations. Applying this approach to SnO2, we calculate a fundamental gap of 3.46 eV, which closely matches the 3.59 eV gap obtained from two-photon spectroscopy experiments, demonstrating the accuracy of this method.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient method for twist-averaged coupled cluster calculation of gap energy: Bulk study of stannic oxide\",\"authors\":\"Maliheh Shaban Tameh, Wayne L. Gladfelter, Jason D. Goodpaster\",\"doi\":\"10.1063/5.0212542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the gap energy of the semiconducting oxide SnO2 through ab initio calculations including both density functional theory (DFT) and coupled cluster methods. The effectiveness of twist averaging in reducing finite-size errors is evaluated across different functionals. We report an overestimation of gap energy when applying finite-size scaling to reach the thermodynamic limit in equation-of-motion (EOM) CCSD calculations. To mitigate one-body and many-body errors, we integrate twist averaging with a post-processing correction mechanism that compares finite-size and infinite-size DFT calculations using hybrid functionals. While inspired by the Kwee, Zhang, and Krakauer approach, our method is specifically tailored to hybrid functionals for a more accurate treatment of exchange-correlation effects. Our approach ensures that the many-body interactions are accurately captured in the estimated gap for an infinite system. We introduce unique single twist angles that provide cost-effective and accurate energies compared to to full twist averaging in EOM-CCSD calculations. Applying this approach to SnO2, we calculate a fundamental gap of 3.46 eV, which closely matches the 3.59 eV gap obtained from two-photon spectroscopy experiments, demonstrating the accuracy of this method.\",\"PeriodicalId\":7619,\"journal\":{\"name\":\"AIP Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIP Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0212542\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0212542","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Efficient method for twist-averaged coupled cluster calculation of gap energy: Bulk study of stannic oxide
We study the gap energy of the semiconducting oxide SnO2 through ab initio calculations including both density functional theory (DFT) and coupled cluster methods. The effectiveness of twist averaging in reducing finite-size errors is evaluated across different functionals. We report an overestimation of gap energy when applying finite-size scaling to reach the thermodynamic limit in equation-of-motion (EOM) CCSD calculations. To mitigate one-body and many-body errors, we integrate twist averaging with a post-processing correction mechanism that compares finite-size and infinite-size DFT calculations using hybrid functionals. While inspired by the Kwee, Zhang, and Krakauer approach, our method is specifically tailored to hybrid functionals for a more accurate treatment of exchange-correlation effects. Our approach ensures that the many-body interactions are accurately captured in the estimated gap for an infinite system. We introduce unique single twist angles that provide cost-effective and accurate energies compared to to full twist averaging in EOM-CCSD calculations. Applying this approach to SnO2, we calculate a fundamental gap of 3.46 eV, which closely matches the 3.59 eV gap obtained from two-photon spectroscopy experiments, demonstrating the accuracy of this method.
期刊介绍:
AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences.
AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.