石墨烯/氮化硼异质结构中应变诱导标量和伪矢量势的量子输运特征

IF 3.8 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Romaine Kerjouan, Michael Rosticher, Aurélie Pierret, Kenji Watanabe, Takashi Taniguchi, Sukhdeep Dhillon, Robson Ferreira, Daniel Dolfi, Mark Goerbig, Bernard Plaçais, Juliette Mangeney
{"title":"石墨烯/氮化硼异质结构中应变诱导标量和伪矢量势的量子输运特征","authors":"Romaine Kerjouan, Michael Rosticher, Aurélie Pierret, Kenji Watanabe, Takashi Taniguchi, Sukhdeep Dhillon, Robson Ferreira, Daniel Dolfi, Mark Goerbig, Bernard Plaçais, Juliette Mangeney","doi":"10.1103/physrevapplied.22.024076","DOIUrl":null,"url":null,"abstract":"The sharp Dirac cone of electronic dispersion confers to graphene a remarkable sensitivity to strain. It is usually encoded in scalar and pseudovector potentials, induced by the modification of hopping parameters, which have given rise to new phenomena at the nanoscale, such as giant pseudomagnetic fields and valley polarization. Here, we unveil the effect of these potentials on the quantum transport across a succession of strain-induced barriers. We use high-mobility <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>h</mi></math>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>BN</mi></math>–encapsulated graphene, transferred over a large (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>10</mn><mo>×</mo><mn>10</mn><mspace width=\"0.2em\"></mspace><mtext fontfamily=\"times\">μ</mtext><msup><mrow><mi mathvariant=\"normal\">m</mi></mrow><mn>2</mn></msup></math>) crenelated <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>h</mi></math>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>BN</mi></math> substrate. We show the emergence of a broad resistance ancillary peak at positive energy that arises from Klein-tunneling barriers induced by the tensile strain at the trench edges. Our theoretical study, in agreement with experiment, quantitatively highlights the balanced contributions of strain-induced scalar and pseudovector potentials on ballistic transport. Our results establish crenelated van der Waals heterostructures as a promising platform for strain engineering in view of applications and basic physics.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"9 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum transport signature of strain-induced scalar and pseudovector potentials in a crenelated h-BN/graphene heterostructure\",\"authors\":\"Romaine Kerjouan, Michael Rosticher, Aurélie Pierret, Kenji Watanabe, Takashi Taniguchi, Sukhdeep Dhillon, Robson Ferreira, Daniel Dolfi, Mark Goerbig, Bernard Plaçais, Juliette Mangeney\",\"doi\":\"10.1103/physrevapplied.22.024076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sharp Dirac cone of electronic dispersion confers to graphene a remarkable sensitivity to strain. It is usually encoded in scalar and pseudovector potentials, induced by the modification of hopping parameters, which have given rise to new phenomena at the nanoscale, such as giant pseudomagnetic fields and valley polarization. Here, we unveil the effect of these potentials on the quantum transport across a succession of strain-induced barriers. We use high-mobility <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>h</mi></math>-<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>BN</mi></math>–encapsulated graphene, transferred over a large (<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>10</mn><mo>×</mo><mn>10</mn><mspace width=\\\"0.2em\\\"></mspace><mtext fontfamily=\\\"times\\\">μ</mtext><msup><mrow><mi mathvariant=\\\"normal\\\">m</mi></mrow><mn>2</mn></msup></math>) crenelated <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>h</mi></math>-<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>BN</mi></math> substrate. We show the emergence of a broad resistance ancillary peak at positive energy that arises from Klein-tunneling barriers induced by the tensile strain at the trench edges. Our theoretical study, in agreement with experiment, quantitatively highlights the balanced contributions of strain-induced scalar and pseudovector potentials on ballistic transport. Our results establish crenelated van der Waals heterostructures as a promising platform for strain engineering in view of applications and basic physics.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.024076\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.024076","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

电子弥散的尖锐狄拉克锥使石墨烯对应变具有显著的敏感性。它通常被编码在标量和伪矢量势中,通过修改跳跃参数而诱发,从而在纳米尺度上产生了新的现象,如巨大的伪磁场和谷极化。在这里,我们揭示了这些电势对穿越一系列应变诱导壁垒的量子输运的影响。我们使用了高迁移率的 h-BN 封装石墨烯,并将其转移到一个大型(10×10μm2)石榴石化 h-BN 衬底上。我们发现在正能量处出现了一个宽电阻辅助峰,它是由沟槽边缘的拉伸应变引起的克莱因隧道壁垒产生的。我们的理论研究与实验结果一致,定量强调了应变诱导的标量和伪矢量势对弹道传输的平衡贡献。我们的研究结果表明,从应用和基础物理学的角度来看,楔形范德瓦耳斯异质结构是一种很有前途的应变工程平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantum transport signature of strain-induced scalar and pseudovector potentials in a crenelated h-BN/graphene heterostructure

Quantum transport signature of strain-induced scalar and pseudovector potentials in a crenelated h-BN/graphene heterostructure
The sharp Dirac cone of electronic dispersion confers to graphene a remarkable sensitivity to strain. It is usually encoded in scalar and pseudovector potentials, induced by the modification of hopping parameters, which have given rise to new phenomena at the nanoscale, such as giant pseudomagnetic fields and valley polarization. Here, we unveil the effect of these potentials on the quantum transport across a succession of strain-induced barriers. We use high-mobility h-BN–encapsulated graphene, transferred over a large (10×10μm2) crenelated h-BN substrate. We show the emergence of a broad resistance ancillary peak at positive energy that arises from Klein-tunneling barriers induced by the tensile strain at the trench edges. Our theoretical study, in agreement with experiment, quantitatively highlights the balanced contributions of strain-induced scalar and pseudovector potentials on ballistic transport. Our results establish crenelated van der Waals heterostructures as a promising platform for strain engineering in view of applications and basic physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Applied
Physical Review Applied PHYSICS, APPLIED-
CiteScore
7.80
自引率
8.70%
发文量
760
审稿时长
2.5 months
期刊介绍: Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry. PRApplied focuses on topics including: Biophysics, bioelectronics, and biomedical engineering, Device physics, Electronics, Technology to harvest, store, and transmit energy, focusing on renewable energy technologies, Geophysics and space science, Industrial physics, Magnetism and spintronics, Metamaterials, Microfluidics, Nonlinear dynamics and pattern formation in natural or manufactured systems, Nanoscience and nanotechnology, Optics, optoelectronics, photonics, and photonic devices, Quantum information processing, both algorithms and hardware, Soft matter physics, including granular and complex fluids and active matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信