Viktor Könye, Kyrylo Ochkan, Anastasiia Chyzhykova, Jan Carl Budich, Jeroen van den Brink, Ion Cosma Fulga, Joseph Dufouleur
{"title":"非赫米拓扑欧姆计","authors":"Viktor Könye, Kyrylo Ochkan, Anastasiia Chyzhykova, Jan Carl Budich, Jeroen van den Brink, Ion Cosma Fulga, Joseph Dufouleur","doi":"10.1103/physrevapplied.22.l031001","DOIUrl":null,"url":null,"abstract":"Measuring large electrical resistances forms an essential part of common applications such as insulation testing but suffers from a fundamental problem: the larger the resistance, the less sensitive is a canonical ohmmeter. Here, we develop a conceptually different electronic sensor by exploiting the topological properties of non-Hermitian matrices, the eigenvalues of which can show an exponential sensitivity to perturbations. The ohmmeter is realized in a multiterminal linear electronic circuit with a non-Hermitian conductance matrix, where the target resistance plays the role of the perturbation. We inject multiple currents and measure a single voltage in order to directly obtain the value of the resistance. The relative accuracy of the device increases exponentially with the number of terminals and for large resistances outperforms a standard measurement by over an order of magnitude. Our work hopefully paves the way toward leveraging non-Hermitian conductance matrices in high-precision sensing.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"312 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Hermitian topological ohmmeter\",\"authors\":\"Viktor Könye, Kyrylo Ochkan, Anastasiia Chyzhykova, Jan Carl Budich, Jeroen van den Brink, Ion Cosma Fulga, Joseph Dufouleur\",\"doi\":\"10.1103/physrevapplied.22.l031001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measuring large electrical resistances forms an essential part of common applications such as insulation testing but suffers from a fundamental problem: the larger the resistance, the less sensitive is a canonical ohmmeter. Here, we develop a conceptually different electronic sensor by exploiting the topological properties of non-Hermitian matrices, the eigenvalues of which can show an exponential sensitivity to perturbations. The ohmmeter is realized in a multiterminal linear electronic circuit with a non-Hermitian conductance matrix, where the target resistance plays the role of the perturbation. We inject multiple currents and measure a single voltage in order to directly obtain the value of the resistance. The relative accuracy of the device increases exponentially with the number of terminals and for large resistances outperforms a standard measurement by over an order of magnitude. Our work hopefully paves the way toward leveraging non-Hermitian conductance matrices in high-precision sensing.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"312 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.l031001\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.l031001","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Measuring large electrical resistances forms an essential part of common applications such as insulation testing but suffers from a fundamental problem: the larger the resistance, the less sensitive is a canonical ohmmeter. Here, we develop a conceptually different electronic sensor by exploiting the topological properties of non-Hermitian matrices, the eigenvalues of which can show an exponential sensitivity to perturbations. The ohmmeter is realized in a multiterminal linear electronic circuit with a non-Hermitian conductance matrix, where the target resistance plays the role of the perturbation. We inject multiple currents and measure a single voltage in order to directly obtain the value of the resistance. The relative accuracy of the device increases exponentially with the number of terminals and for large resistances outperforms a standard measurement by over an order of magnitude. Our work hopefully paves the way toward leveraging non-Hermitian conductance matrices in high-precision sensing.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.