Mingze Wu, Junhui Li, Bingjie Xu, Song Yu, Yichen Zhang
{"title":"离散调制连续可变量子密钥分发的可信源噪声模型","authors":"Mingze Wu, Junhui Li, Bingjie Xu, Song Yu, Yichen Zhang","doi":"10.1103/physrevapplied.22.034024","DOIUrl":null,"url":null,"abstract":"Discrete-modulated continuous-variable quantum key distribution offers a pragmatic solution, greatly simplifying experimental procedures, while retaining robust integration with classical optical communication. Theoretical analyses have progressively validated the comprehensive security of this protocol, paving the way for practical experimentation. However, imperfect sources in practical implementations introduce noise. The traditional approach is to assume that eavesdroppers can control all of the source noise, which overestimates the ability of eavesdroppers and underestimates the secret-key rate. Some parts of source noise are intrinsic and cannot be manipulated by the eavesdropper, so they can be seen as trusted noise. We tailor a trusted-noise model specifically for the discrete-modulated protocol and upgrade the security analysis accordingly. Simulation results demonstrate that this approach successfully mitigates the negative impact of an imperfect source on system performance, while maintaining security of the protocol. Furthermore, our method can be used in conjunction with a trusted-detector-noise model, effectively reducing the influence of both source noise and detector noise in the experimental setup. This is a meaningful contribution to the practical deployment of discrete-modulated-continuous-variable-quantum-key-distribution systems.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"310 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trusted-source-noise model of discrete-modulated continuous-variable quantum key distribution\",\"authors\":\"Mingze Wu, Junhui Li, Bingjie Xu, Song Yu, Yichen Zhang\",\"doi\":\"10.1103/physrevapplied.22.034024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discrete-modulated continuous-variable quantum key distribution offers a pragmatic solution, greatly simplifying experimental procedures, while retaining robust integration with classical optical communication. Theoretical analyses have progressively validated the comprehensive security of this protocol, paving the way for practical experimentation. However, imperfect sources in practical implementations introduce noise. The traditional approach is to assume that eavesdroppers can control all of the source noise, which overestimates the ability of eavesdroppers and underestimates the secret-key rate. Some parts of source noise are intrinsic and cannot be manipulated by the eavesdropper, so they can be seen as trusted noise. We tailor a trusted-noise model specifically for the discrete-modulated protocol and upgrade the security analysis accordingly. Simulation results demonstrate that this approach successfully mitigates the negative impact of an imperfect source on system performance, while maintaining security of the protocol. Furthermore, our method can be used in conjunction with a trusted-detector-noise model, effectively reducing the influence of both source noise and detector noise in the experimental setup. This is a meaningful contribution to the practical deployment of discrete-modulated-continuous-variable-quantum-key-distribution systems.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"310 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.034024\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.034024","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Trusted-source-noise model of discrete-modulated continuous-variable quantum key distribution
Discrete-modulated continuous-variable quantum key distribution offers a pragmatic solution, greatly simplifying experimental procedures, while retaining robust integration with classical optical communication. Theoretical analyses have progressively validated the comprehensive security of this protocol, paving the way for practical experimentation. However, imperfect sources in practical implementations introduce noise. The traditional approach is to assume that eavesdroppers can control all of the source noise, which overestimates the ability of eavesdroppers and underestimates the secret-key rate. Some parts of source noise are intrinsic and cannot be manipulated by the eavesdropper, so they can be seen as trusted noise. We tailor a trusted-noise model specifically for the discrete-modulated protocol and upgrade the security analysis accordingly. Simulation results demonstrate that this approach successfully mitigates the negative impact of an imperfect source on system performance, while maintaining security of the protocol. Furthermore, our method can be used in conjunction with a trusted-detector-noise model, effectively reducing the influence of both source noise and detector noise in the experimental setup. This is a meaningful contribution to the practical deployment of discrete-modulated-continuous-variable-quantum-key-distribution systems.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.