通过偶极耦合提高磁子逻辑门的信噪比

IF 3.8 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Ryunosuke Hayashi, Shoki Nezu, Koji Sekiguchi
{"title":"通过偶极耦合提高磁子逻辑门的信噪比","authors":"Ryunosuke Hayashi, Shoki Nezu, Koji Sekiguchi","doi":"10.1103/physrevapplied.22.034037","DOIUrl":null,"url":null,"abstract":"This work presents a significant advancement in spin-wave computing devices utilizing magnetostatic surface spin waves. We demonstrate a micro-<span>Y</span>-shaped waveguide fabricated from yttrium iron garnet with a nanometer thickness. This intricately engineered design enables a novel logic device with two inputs and one output, enabling future cascading of such elements. Electrical measurements on the <span>Y</span>-shaped structure reveal that strategically introduced gaps effectively manipulate spin-wave propagation, as corroborated by detailed micromagnetic simulations. Notably, we achieve robust diagonal spin-wave transmission across 1.2 µm gaps, covering a distance of 120 µm. Furthermore, the gapped device exhibits clear phase-dependent spin-wave interference, surpassing the performance of a conventional <span>Y</span>-shaped design. This phenomenon, confirmed by mapping simulated magnetization components, signifies the potential of dipole-coupled devices for realizing efficient 2-input-1-output magnonic logic elements, laying the groundwork for future development in this field.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"9 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced signal-to-noise ratio in magnonic logic gates via dipole coupling\",\"authors\":\"Ryunosuke Hayashi, Shoki Nezu, Koji Sekiguchi\",\"doi\":\"10.1103/physrevapplied.22.034037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a significant advancement in spin-wave computing devices utilizing magnetostatic surface spin waves. We demonstrate a micro-<span>Y</span>-shaped waveguide fabricated from yttrium iron garnet with a nanometer thickness. This intricately engineered design enables a novel logic device with two inputs and one output, enabling future cascading of such elements. Electrical measurements on the <span>Y</span>-shaped structure reveal that strategically introduced gaps effectively manipulate spin-wave propagation, as corroborated by detailed micromagnetic simulations. Notably, we achieve robust diagonal spin-wave transmission across 1.2 µm gaps, covering a distance of 120 µm. Furthermore, the gapped device exhibits clear phase-dependent spin-wave interference, surpassing the performance of a conventional <span>Y</span>-shaped design. This phenomenon, confirmed by mapping simulated magnetization components, signifies the potential of dipole-coupled devices for realizing efficient 2-input-1-output magnonic logic elements, laying the groundwork for future development in this field.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.034037\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.034037","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

这项工作展示了利用磁静力表面自旋波的自旋波计算设备的重大进展。我们展示了用纳米厚度的钇铁石榴石制造的微型 Y 形波导。这种复杂的工程设计实现了一种具有两个输入和一个输出的新型逻辑器件,使未来此类元件的级联成为可能。对 Y 型结构进行的电学测量显示,策略性引入的间隙能有效操纵自旋波的传播,详细的微磁模拟也证实了这一点。值得注意的是,我们实现了跨越 1.2 微米间隙、覆盖 120 微米距离的强劲对角线自旋波传输。此外,间隙器件还表现出明显的相位自旋波干涉,性能超过了传统的 Y 型设计。这一现象通过绘制模拟磁化分量图得到证实,表明偶极耦合器件具有实现高效 2 输入 1 输出磁性逻辑元件的潜力,为这一领域的未来发展奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced signal-to-noise ratio in magnonic logic gates via dipole coupling

Enhanced signal-to-noise ratio in magnonic logic gates via dipole coupling
This work presents a significant advancement in spin-wave computing devices utilizing magnetostatic surface spin waves. We demonstrate a micro-Y-shaped waveguide fabricated from yttrium iron garnet with a nanometer thickness. This intricately engineered design enables a novel logic device with two inputs and one output, enabling future cascading of such elements. Electrical measurements on the Y-shaped structure reveal that strategically introduced gaps effectively manipulate spin-wave propagation, as corroborated by detailed micromagnetic simulations. Notably, we achieve robust diagonal spin-wave transmission across 1.2 µm gaps, covering a distance of 120 µm. Furthermore, the gapped device exhibits clear phase-dependent spin-wave interference, surpassing the performance of a conventional Y-shaped design. This phenomenon, confirmed by mapping simulated magnetization components, signifies the potential of dipole-coupled devices for realizing efficient 2-input-1-output magnonic logic elements, laying the groundwork for future development in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Applied
Physical Review Applied PHYSICS, APPLIED-
CiteScore
7.80
自引率
8.70%
发文量
760
审稿时长
2.5 months
期刊介绍: Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry. PRApplied focuses on topics including: Biophysics, bioelectronics, and biomedical engineering, Device physics, Electronics, Technology to harvest, store, and transmit energy, focusing on renewable energy technologies, Geophysics and space science, Industrial physics, Magnetism and spintronics, Metamaterials, Microfluidics, Nonlinear dynamics and pattern formation in natural or manufactured systems, Nanoscience and nanotechnology, Optics, optoelectronics, photonics, and photonic devices, Quantum information processing, both algorithms and hardware, Soft matter physics, including granular and complex fluids and active matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信