Haojie Wan, Siqi Zhong, Yifan Liu, Yifei Xiong, Ting He, Rong Zeng, Shuang Cai, Jianwen Liu
{"title":"用于高压锂电池的含苏尔通添加剂的先进电解质系统","authors":"Haojie Wan, Siqi Zhong, Yifan Liu, Yifei Xiong, Ting He, Rong Zeng, Shuang Cai, Jianwen Liu","doi":"10.1002/batt.202400477","DOIUrl":null,"url":null,"abstract":"The new energy market is growing rapidly, lithium batteries (LBs) as the most important source of energy supply in the energy storage and power market, has higher requirements for fast charge and long life, so it is necessary to improve the cell voltage and energy density of LBs. However, LBs with high voltage and high energy density will face serious challenges of electrolyte decomposition and electrode corrosion in high voltage environment. Herein, this review summarizes the effects of a series of sultones as electrolyte additives in high voltage electrolytes. It is found that DTD, ES, 1,3‐PS, PES, PCS, MMDS, BDTD, BDTT, DTDph, ODTO, FPS, VES and other sultones have excellent properties on stabilizing SEI/CEI formation, inhibiting gas production, and good high temperature resistance. The preferential oxidation/reduction of sultones can protect the electrolyte from decomposition, and the uniform and dense SEI/CEI can also promote Li+ transport, protect the electrode from corrosion, prevent the growth of lithium dendrites, and promote the insertion and removal of Li+, so as to improve the cycle life of the high‐voltage battery. This review can provide theoretical support for the design of high voltage and high energy density LBs electrolyte and selection of additives in the future.","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"34 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Electrolyte Systems with Sultones Additives for High‐Voltage Lithium Batteries\",\"authors\":\"Haojie Wan, Siqi Zhong, Yifan Liu, Yifei Xiong, Ting He, Rong Zeng, Shuang Cai, Jianwen Liu\",\"doi\":\"10.1002/batt.202400477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new energy market is growing rapidly, lithium batteries (LBs) as the most important source of energy supply in the energy storage and power market, has higher requirements for fast charge and long life, so it is necessary to improve the cell voltage and energy density of LBs. However, LBs with high voltage and high energy density will face serious challenges of electrolyte decomposition and electrode corrosion in high voltage environment. Herein, this review summarizes the effects of a series of sultones as electrolyte additives in high voltage electrolytes. It is found that DTD, ES, 1,3‐PS, PES, PCS, MMDS, BDTD, BDTT, DTDph, ODTO, FPS, VES and other sultones have excellent properties on stabilizing SEI/CEI formation, inhibiting gas production, and good high temperature resistance. The preferential oxidation/reduction of sultones can protect the electrolyte from decomposition, and the uniform and dense SEI/CEI can also promote Li+ transport, protect the electrode from corrosion, prevent the growth of lithium dendrites, and promote the insertion and removal of Li+, so as to improve the cycle life of the high‐voltage battery. This review can provide theoretical support for the design of high voltage and high energy density LBs electrolyte and selection of additives in the future.\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/batt.202400477\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/batt.202400477","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Advanced Electrolyte Systems with Sultones Additives for High‐Voltage Lithium Batteries
The new energy market is growing rapidly, lithium batteries (LBs) as the most important source of energy supply in the energy storage and power market, has higher requirements for fast charge and long life, so it is necessary to improve the cell voltage and energy density of LBs. However, LBs with high voltage and high energy density will face serious challenges of electrolyte decomposition and electrode corrosion in high voltage environment. Herein, this review summarizes the effects of a series of sultones as electrolyte additives in high voltage electrolytes. It is found that DTD, ES, 1,3‐PS, PES, PCS, MMDS, BDTD, BDTT, DTDph, ODTO, FPS, VES and other sultones have excellent properties on stabilizing SEI/CEI formation, inhibiting gas production, and good high temperature resistance. The preferential oxidation/reduction of sultones can protect the electrolyte from decomposition, and the uniform and dense SEI/CEI can also promote Li+ transport, protect the electrode from corrosion, prevent the growth of lithium dendrites, and promote the insertion and removal of Li+, so as to improve the cycle life of the high‐voltage battery. This review can provide theoretical support for the design of high voltage and high energy density LBs electrolyte and selection of additives in the future.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.