{"title":"血浆诱导树突状细胞疫苗的制备及其在小鼠黑色素瘤模型中的抗肿瘤免疫作用","authors":"Xiangni Wang, Jinren Liu, Xiying Wang, Jiajia Lu, Guimin Xu, Yixin Cui, Zhirou He, Yulin Xu, Xingmin Shi, Guanjun Zhang","doi":"10.1002/adtp.202400142","DOIUrl":null,"url":null,"abstract":"<p>Dendritic cell (DC) vaccines play an important role in anti-tumor immunotherapy. Tumor-associated cells or cytokines in the tumor microenvironment (TME) can inhibit the antigen-presenting function of DC. Immunogenic cell death (ICD) can enhance the uptake and presentation of tumor antigens by DC. This study investigates the maturation mechanism of DC induced by low-temperature plasma (LTP), as well as the therapeutic and protective effects of LTP-induced DC vaccine in a tumor model. DC2.4 that is co-cultured with LTP-treated B16F10 (LTP-B16) or with these supernatants exhibited decreased phagocytic activity, increased production of cytokines (IL-12, IL-6, TNF-α, and IL-1β), and increased expression of cell surface activation markers (CD80, CD86, and MHC II). The expression of CD80<sup>+</sup>/CD86<sup>+</sup> is decreased after pre-treatment with TLR4 and NF-κB (p65) inhibitors, respectively. In vivo, trials indicated that the LTP-induced DC vaccine-induced anti-tumor immunity and, when combined with cisplatin, synergistically reduced tumor growth.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"7 10","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of a Plasma-Induced Dendritic Cell Vaccine and its Anti-Tumor Immunity in a Murine Model of Melanoma\",\"authors\":\"Xiangni Wang, Jinren Liu, Xiying Wang, Jiajia Lu, Guimin Xu, Yixin Cui, Zhirou He, Yulin Xu, Xingmin Shi, Guanjun Zhang\",\"doi\":\"10.1002/adtp.202400142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dendritic cell (DC) vaccines play an important role in anti-tumor immunotherapy. Tumor-associated cells or cytokines in the tumor microenvironment (TME) can inhibit the antigen-presenting function of DC. Immunogenic cell death (ICD) can enhance the uptake and presentation of tumor antigens by DC. This study investigates the maturation mechanism of DC induced by low-temperature plasma (LTP), as well as the therapeutic and protective effects of LTP-induced DC vaccine in a tumor model. DC2.4 that is co-cultured with LTP-treated B16F10 (LTP-B16) or with these supernatants exhibited decreased phagocytic activity, increased production of cytokines (IL-12, IL-6, TNF-α, and IL-1β), and increased expression of cell surface activation markers (CD80, CD86, and MHC II). The expression of CD80<sup>+</sup>/CD86<sup>+</sup> is decreased after pre-treatment with TLR4 and NF-κB (p65) inhibitors, respectively. In vivo, trials indicated that the LTP-induced DC vaccine-induced anti-tumor immunity and, when combined with cisplatin, synergistically reduced tumor growth.</p>\",\"PeriodicalId\":7284,\"journal\":{\"name\":\"Advanced Therapeutics\",\"volume\":\"7 10\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adtp.202400142\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adtp.202400142","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Preparation of a Plasma-Induced Dendritic Cell Vaccine and its Anti-Tumor Immunity in a Murine Model of Melanoma
Dendritic cell (DC) vaccines play an important role in anti-tumor immunotherapy. Tumor-associated cells or cytokines in the tumor microenvironment (TME) can inhibit the antigen-presenting function of DC. Immunogenic cell death (ICD) can enhance the uptake and presentation of tumor antigens by DC. This study investigates the maturation mechanism of DC induced by low-temperature plasma (LTP), as well as the therapeutic and protective effects of LTP-induced DC vaccine in a tumor model. DC2.4 that is co-cultured with LTP-treated B16F10 (LTP-B16) or with these supernatants exhibited decreased phagocytic activity, increased production of cytokines (IL-12, IL-6, TNF-α, and IL-1β), and increased expression of cell surface activation markers (CD80, CD86, and MHC II). The expression of CD80+/CD86+ is decreased after pre-treatment with TLR4 and NF-κB (p65) inhibitors, respectively. In vivo, trials indicated that the LTP-induced DC vaccine-induced anti-tumor immunity and, when combined with cisplatin, synergistically reduced tumor growth.