微机电系统设备中可压缩流体-结构-静电相互作用的整体有限元建模

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Suman Dutta, C. S. Jog
{"title":"微机电系统设备中可压缩流体-结构-静电相互作用的整体有限元建模","authors":"Suman Dutta,&nbsp;C. S. Jog","doi":"10.1002/fld.5329","DOIUrl":null,"url":null,"abstract":"<p>This work presents a monolithic finite element strategy for the accurate solution of strongly-coupled fluid-structure-electrostatics interaction problems involving a compressible fluid. The complete set of equations for a compressible fluid is employed within the framework of the arbitrary Lagrangian–Eulerian (ALE) fluid formulation on the reference configuration. The proposed numerical approach incorporates geometric nonlinearities of both the structural and fluid domains, and can thus be used for investigating dynamic pull-in phenomena and squeeze film damping in high aspect-ratio micro-electro-mechanical systems (MEMS) structures immersed in a compressible fluid. Through various illustrative examples, we demonstrate the significant influence of fluid compressibility on the dynamics of MEMS devices subjected to constrained geometry and/or high-frequency electrostatic actuation. Moreover, we compare the proposed formulation with the nonlinear compressible Reynolds equation and highlight that, particularly at low pressures and high fluid viscosity, the Reynolds equation fails to provide a reliable approximation to the complete set of equations utilized in our proposed formulation.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monolithic finite element modeling of compressible fluid-structure-electrostatics interactions in MEMS devices\",\"authors\":\"Suman Dutta,&nbsp;C. S. Jog\",\"doi\":\"10.1002/fld.5329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work presents a monolithic finite element strategy for the accurate solution of strongly-coupled fluid-structure-electrostatics interaction problems involving a compressible fluid. The complete set of equations for a compressible fluid is employed within the framework of the arbitrary Lagrangian–Eulerian (ALE) fluid formulation on the reference configuration. The proposed numerical approach incorporates geometric nonlinearities of both the structural and fluid domains, and can thus be used for investigating dynamic pull-in phenomena and squeeze film damping in high aspect-ratio micro-electro-mechanical systems (MEMS) structures immersed in a compressible fluid. Through various illustrative examples, we demonstrate the significant influence of fluid compressibility on the dynamics of MEMS devices subjected to constrained geometry and/or high-frequency electrostatic actuation. Moreover, we compare the proposed formulation with the nonlinear compressible Reynolds equation and highlight that, particularly at low pressures and high fluid viscosity, the Reynolds equation fails to provide a reliable approximation to the complete set of equations utilized in our proposed formulation.</p>\",\"PeriodicalId\":50348,\"journal\":{\"name\":\"International Journal for Numerical Methods in Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fld.5329\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5329","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种整体有限元策略,用于精确解决涉及可压缩流体的强耦合流固电相互作用问题。在参考构型的任意拉格朗日-欧勒(ALE)流体公式框架内,采用了可压缩流体的全套方程。所提出的数值方法包含了结构域和流体域的几何非线性,因此可用于研究浸没在可压缩流体中的高纵横比微机电系统(MEMS)结构的动态拉入现象和挤压膜阻尼。通过各种示例,我们证明了流体可压缩性对受限几何形状和/或高频静电驱动的微机电系统器件动态的重大影响。此外,我们还将所提出的公式与非线性可压缩雷诺方程进行了比较,并着重指出,特别是在低压和高流体粘度条件下,雷诺方程无法为我们所提出的公式中使用的全套方程提供可靠的近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monolithic finite element modeling of compressible fluid-structure-electrostatics interactions in MEMS devices

This work presents a monolithic finite element strategy for the accurate solution of strongly-coupled fluid-structure-electrostatics interaction problems involving a compressible fluid. The complete set of equations for a compressible fluid is employed within the framework of the arbitrary Lagrangian–Eulerian (ALE) fluid formulation on the reference configuration. The proposed numerical approach incorporates geometric nonlinearities of both the structural and fluid domains, and can thus be used for investigating dynamic pull-in phenomena and squeeze film damping in high aspect-ratio micro-electro-mechanical systems (MEMS) structures immersed in a compressible fluid. Through various illustrative examples, we demonstrate the significant influence of fluid compressibility on the dynamics of MEMS devices subjected to constrained geometry and/or high-frequency electrostatic actuation. Moreover, we compare the proposed formulation with the nonlinear compressible Reynolds equation and highlight that, particularly at low pressures and high fluid viscosity, the Reynolds equation fails to provide a reliable approximation to the complete set of equations utilized in our proposed formulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Fluids
International Journal for Numerical Methods in Fluids 物理-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
111
审稿时长
8 months
期刊介绍: The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction. Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review. The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信