菱形多边形的面积

IF 0.5 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
Charles F. F. Karney
{"title":"菱形多边形的面积","authors":"Charles F. F. Karney","doi":"10.1007/s11200-024-0709-z","DOIUrl":null,"url":null,"abstract":"<div><p>The formula for the area of a rhumb polygon, a polygon whose edges are rhumb lines on an ellipsoid of revolution, is derived and a method is given for computing the area accurately. This paper also points out that standard methods for computing rhumb lines give inaccurate results for nearly east- or west-going lines; this problem is remedied by the systematic use of divided differences.</p></div>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":"68 3-4","pages":"99 - 120"},"PeriodicalIF":0.5000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11200-024-0709-z.pdf","citationCount":"0","resultStr":"{\"title\":\"The area of rhumb polygons\",\"authors\":\"Charles F. F. Karney\",\"doi\":\"10.1007/s11200-024-0709-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The formula for the area of a rhumb polygon, a polygon whose edges are rhumb lines on an ellipsoid of revolution, is derived and a method is given for computing the area accurately. This paper also points out that standard methods for computing rhumb lines give inaccurate results for nearly east- or west-going lines; this problem is remedied by the systematic use of divided differences.</p></div>\",\"PeriodicalId\":22001,\"journal\":{\"name\":\"Studia Geophysica et Geodaetica\",\"volume\":\"68 3-4\",\"pages\":\"99 - 120\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11200-024-0709-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geophysica et Geodaetica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11200-024-0709-z\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-024-0709-z","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文推导了菱形多边形的面积公式,并给出了精确计算面积的方法。菱形多边形是指边缘为旋转椭圆体上的菱形线的多边形。本文还指出,对于近东或近西的直线,标准的计算方法得出的结果并不准确;这个问题可以通过系统地使用分差来解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The area of rhumb polygons

The formula for the area of a rhumb polygon, a polygon whose edges are rhumb lines on an ellipsoid of revolution, is derived and a method is given for computing the area accurately. This paper also points out that standard methods for computing rhumb lines give inaccurate results for nearly east- or west-going lines; this problem is remedied by the systematic use of divided differences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Geophysica et Geodaetica
Studia Geophysica et Geodaetica 地学-地球化学与地球物理
CiteScore
1.90
自引率
0.00%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信