Mingming Gu, Ziqiao Chang, Aman Satija, Shengming Yin, Shaojie Wang, Fei Qi, Robert P. Lucht
{"title":"用于高温高压诊断的 CO2 CPP fs CARS 的理论和实验特性分析","authors":"Mingming Gu, Ziqiao Chang, Aman Satija, Shengming Yin, Shaojie Wang, Fei Qi, Robert P. Lucht","doi":"10.1016/j.proci.2024.105737","DOIUrl":null,"url":null,"abstract":"We presented a theoretical model designed to account for collisional line-mixing (LM) effects in order to provide an accurate characterization of femtosecond (fs) coherent anti-Stokes Raman scattering (CARS) spectroscopy for CO under high-temperature and high-pressure conditions. Numerical simulations revealed that the closely spaced rotational transitions within each CO vibrational manifold induced significant collisional line-mixing. This phenomenon led to a narrowing of the bandwidth of the entire vibrational manifold, partially offsetting the collisional broadening effects. Theoretical derivations further suggested that, for a relatively short probe delay (4-9 ps), a high-pressure CO chirped probe pulse (CPP) fs CARS spectrum could be precisely modeled by utilizing transition information extracted from atmospheric pressures. This proposition was substantiated through experimental measurements conducted in an atmospheric-pressure laminar flame over a temperature range of 300-1922 K, as well as in a high-pressure and high-temperature gas cell (HPHTC) at pressures up to 69 atm and preset temperatures reaching 805 K. The results indicated that CO CPP fs CARS held promise as an ideal diagnostic tool for high-pressure environments.","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"306 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical and experimental characterization of CO2 CPP fs CARS for high-temperature and high-pressure diagnostics\",\"authors\":\"Mingming Gu, Ziqiao Chang, Aman Satija, Shengming Yin, Shaojie Wang, Fei Qi, Robert P. Lucht\",\"doi\":\"10.1016/j.proci.2024.105737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We presented a theoretical model designed to account for collisional line-mixing (LM) effects in order to provide an accurate characterization of femtosecond (fs) coherent anti-Stokes Raman scattering (CARS) spectroscopy for CO under high-temperature and high-pressure conditions. Numerical simulations revealed that the closely spaced rotational transitions within each CO vibrational manifold induced significant collisional line-mixing. This phenomenon led to a narrowing of the bandwidth of the entire vibrational manifold, partially offsetting the collisional broadening effects. Theoretical derivations further suggested that, for a relatively short probe delay (4-9 ps), a high-pressure CO chirped probe pulse (CPP) fs CARS spectrum could be precisely modeled by utilizing transition information extracted from atmospheric pressures. This proposition was substantiated through experimental measurements conducted in an atmospheric-pressure laminar flame over a temperature range of 300-1922 K, as well as in a high-pressure and high-temperature gas cell (HPHTC) at pressures up to 69 atm and preset temperatures reaching 805 K. The results indicated that CO CPP fs CARS held promise as an ideal diagnostic tool for high-pressure environments.\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":\"306 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.proci.2024.105737\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.proci.2024.105737","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
我们提出了一个旨在考虑碰撞线混合(LM)效应的理论模型,以准确描述一氧化碳在高温高压条件下的飞秒(fs)相干反斯托克斯拉曼散射(CARS)光谱。数值模拟显示,每个一氧化碳振动流形内紧密间隔的旋转跃迁会诱发显著的碰撞线混合。这种现象导致整个振动歧管的带宽变窄,部分抵消了碰撞展宽效应。理论推导进一步表明,对于相对较短的探针延迟(4-9 ps),高压 CO chirped probe pulse (CPP) fs CARS 光谱可以利用从大气压力中提取的过渡信息进行精确建模。在温度范围为 300-1922 K 的常压层流火焰中,以及在压力高达 69 atm 和预设温度达到 805 K 的高压高温气室 (HPHTC) 中进行的实验测量证实了这一观点。
Theoretical and experimental characterization of CO2 CPP fs CARS for high-temperature and high-pressure diagnostics
We presented a theoretical model designed to account for collisional line-mixing (LM) effects in order to provide an accurate characterization of femtosecond (fs) coherent anti-Stokes Raman scattering (CARS) spectroscopy for CO under high-temperature and high-pressure conditions. Numerical simulations revealed that the closely spaced rotational transitions within each CO vibrational manifold induced significant collisional line-mixing. This phenomenon led to a narrowing of the bandwidth of the entire vibrational manifold, partially offsetting the collisional broadening effects. Theoretical derivations further suggested that, for a relatively short probe delay (4-9 ps), a high-pressure CO chirped probe pulse (CPP) fs CARS spectrum could be precisely modeled by utilizing transition information extracted from atmospheric pressures. This proposition was substantiated through experimental measurements conducted in an atmospheric-pressure laminar flame over a temperature range of 300-1922 K, as well as in a high-pressure and high-temperature gas cell (HPHTC) at pressures up to 69 atm and preset temperatures reaching 805 K. The results indicated that CO CPP fs CARS held promise as an ideal diagnostic tool for high-pressure environments.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.