Peiying Hu, Sijia Ge, Siyuan Dou, Zhengqiang Lv, Mengmeng Li, Zhiyang Zhao, Peigen Zhang, Jin Wang, ZhengMing Sun
{"title":"超轻 M5 气凝胶具有卓越的热稳定性和固有阻燃性能","authors":"Peiying Hu, Sijia Ge, Siyuan Dou, Zhengqiang Lv, Mengmeng Li, Zhiyang Zhao, Peigen Zhang, Jin Wang, ZhengMing Sun","doi":"10.1002/cssc.202401062","DOIUrl":null,"url":null,"abstract":"Ultra-lightweight materials often face the formidable challenge of balancing their low density, high porosity, high mechanical stiffness, high thermal and environmental stability, and low thermal conductivity. This study introduces an innovative method for synthesizing high-performance polymer aerogels to address the challenge. Specifically, we detail the production of poly (2,5-dihydroxy-1,4-phenylene pyridine diimidazole) (PIPD or M5) aerogels. This process involves chemically stripping M5 \"super\" fibers into nanofibers, undergoing a Sol-Gel transition, followed by freeze-drying and subsequent thermal annealing. The M5 aerogels excel beyond existing polymer aerogels, boasting an ultralight density of 6.03 mg cm-3, superior thermal insulation with thermal conductivity at 32 mW m-1 K-1, inherent flame retardancy (LOI = 50.3%), 80% compression resilience, a high specific surface area of 462.1 m2 g-1, and outstanding thermal stability up to 463 °C. These multi-faceted properties position the M5 aerogel as a front-runner in lightweight insulation materials, demonstrating the strategic use of high-performance polymer assembly units in aerogel design.","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultralight M5 aerogels with superior thermal stability and inherent flame retardancy\",\"authors\":\"Peiying Hu, Sijia Ge, Siyuan Dou, Zhengqiang Lv, Mengmeng Li, Zhiyang Zhao, Peigen Zhang, Jin Wang, ZhengMing Sun\",\"doi\":\"10.1002/cssc.202401062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra-lightweight materials often face the formidable challenge of balancing their low density, high porosity, high mechanical stiffness, high thermal and environmental stability, and low thermal conductivity. This study introduces an innovative method for synthesizing high-performance polymer aerogels to address the challenge. Specifically, we detail the production of poly (2,5-dihydroxy-1,4-phenylene pyridine diimidazole) (PIPD or M5) aerogels. This process involves chemically stripping M5 \\\"super\\\" fibers into nanofibers, undergoing a Sol-Gel transition, followed by freeze-drying and subsequent thermal annealing. The M5 aerogels excel beyond existing polymer aerogels, boasting an ultralight density of 6.03 mg cm-3, superior thermal insulation with thermal conductivity at 32 mW m-1 K-1, inherent flame retardancy (LOI = 50.3%), 80% compression resilience, a high specific surface area of 462.1 m2 g-1, and outstanding thermal stability up to 463 °C. These multi-faceted properties position the M5 aerogel as a front-runner in lightweight insulation materials, demonstrating the strategic use of high-performance polymer assembly units in aerogel design.\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202401062\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401062","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultralight M5 aerogels with superior thermal stability and inherent flame retardancy
Ultra-lightweight materials often face the formidable challenge of balancing their low density, high porosity, high mechanical stiffness, high thermal and environmental stability, and low thermal conductivity. This study introduces an innovative method for synthesizing high-performance polymer aerogels to address the challenge. Specifically, we detail the production of poly (2,5-dihydroxy-1,4-phenylene pyridine diimidazole) (PIPD or M5) aerogels. This process involves chemically stripping M5 "super" fibers into nanofibers, undergoing a Sol-Gel transition, followed by freeze-drying and subsequent thermal annealing. The M5 aerogels excel beyond existing polymer aerogels, boasting an ultralight density of 6.03 mg cm-3, superior thermal insulation with thermal conductivity at 32 mW m-1 K-1, inherent flame retardancy (LOI = 50.3%), 80% compression resilience, a high specific surface area of 462.1 m2 g-1, and outstanding thermal stability up to 463 °C. These multi-faceted properties position the M5 aerogel as a front-runner in lightweight insulation materials, demonstrating the strategic use of high-performance polymer assembly units in aerogel design.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology