Kyung Won Kang, Adriana Lucila Lemos Barboza, Leticia Anahí Azpeitia, Claudio Alfredo Gervasi, Nahuel Blasetti, Karina Alejandra Mayocchi, Carlos Luis Llorente
{"title":"经生物活性处理的钛制牙科植入体的表面特征和体外性能与骨结合力的增强","authors":"Kyung Won Kang, Adriana Lucila Lemos Barboza, Leticia Anahí Azpeitia, Claudio Alfredo Gervasi, Nahuel Blasetti, Karina Alejandra Mayocchi, Carlos Luis Llorente","doi":"10.1007/s11661-024-07554-x","DOIUrl":null,"url":null,"abstract":"<p>Surface properties of dental implant materials, whether they are physical, chemical, mechanical, or biological, influence the processes of osseointegration and the development of the biological seal at the implant-soft tissue interface. In turn, successful occurrence of these steps prevents peri-implant diseases. This goal can be achieved through the application of surface treatments of a bioactive nature leading to an effective implant-bone union. Our work focuses on a thorough characterization of bioactive surface properties obtained through alkaline treatment on two different surfaces used in the dental implant industry, namely, a surface blasted with calcium phosphate particles and a micro-arc anodized surface. The results show that the alkaline treatment modifies the surface properties of both blasted and anodized samples. Modification is related to the formation of a nanoporous amorphous sodium titanate hydrogel that exhibits high bioactivity in an SBF medium. To assess <i>in vitro</i> biocompatibility and bioactivity, a 48-hour cell culture assay was conducted using dental pulp mesenchymal stem cells. All samples demonstrated cell adhesion, growth, and intercellular communication, indicating that the surfaces are biocompatible and non-cytotoxic. However, samples subjected to alkaline treatment exhibited qualitatively superior bioactivity and <i>in vitro</i> behavior and among them, the blasted sample produced the surface with best performance.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Characterization and In Vitro Performance of Bioactive-Treated Titanium Dental Implants with Enhanced Osseointegration\",\"authors\":\"Kyung Won Kang, Adriana Lucila Lemos Barboza, Leticia Anahí Azpeitia, Claudio Alfredo Gervasi, Nahuel Blasetti, Karina Alejandra Mayocchi, Carlos Luis Llorente\",\"doi\":\"10.1007/s11661-024-07554-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Surface properties of dental implant materials, whether they are physical, chemical, mechanical, or biological, influence the processes of osseointegration and the development of the biological seal at the implant-soft tissue interface. In turn, successful occurrence of these steps prevents peri-implant diseases. This goal can be achieved through the application of surface treatments of a bioactive nature leading to an effective implant-bone union. Our work focuses on a thorough characterization of bioactive surface properties obtained through alkaline treatment on two different surfaces used in the dental implant industry, namely, a surface blasted with calcium phosphate particles and a micro-arc anodized surface. The results show that the alkaline treatment modifies the surface properties of both blasted and anodized samples. Modification is related to the formation of a nanoporous amorphous sodium titanate hydrogel that exhibits high bioactivity in an SBF medium. To assess <i>in vitro</i> biocompatibility and bioactivity, a 48-hour cell culture assay was conducted using dental pulp mesenchymal stem cells. All samples demonstrated cell adhesion, growth, and intercellular communication, indicating that the surfaces are biocompatible and non-cytotoxic. However, samples subjected to alkaline treatment exhibited qualitatively superior bioactivity and <i>in vitro</i> behavior and among them, the blasted sample produced the surface with best performance.</p>\",\"PeriodicalId\":18504,\"journal\":{\"name\":\"Metallurgical and Materials Transactions A\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11661-024-07554-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11661-024-07554-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surface Characterization and In Vitro Performance of Bioactive-Treated Titanium Dental Implants with Enhanced Osseointegration
Surface properties of dental implant materials, whether they are physical, chemical, mechanical, or biological, influence the processes of osseointegration and the development of the biological seal at the implant-soft tissue interface. In turn, successful occurrence of these steps prevents peri-implant diseases. This goal can be achieved through the application of surface treatments of a bioactive nature leading to an effective implant-bone union. Our work focuses on a thorough characterization of bioactive surface properties obtained through alkaline treatment on two different surfaces used in the dental implant industry, namely, a surface blasted with calcium phosphate particles and a micro-arc anodized surface. The results show that the alkaline treatment modifies the surface properties of both blasted and anodized samples. Modification is related to the formation of a nanoporous amorphous sodium titanate hydrogel that exhibits high bioactivity in an SBF medium. To assess in vitro biocompatibility and bioactivity, a 48-hour cell culture assay was conducted using dental pulp mesenchymal stem cells. All samples demonstrated cell adhesion, growth, and intercellular communication, indicating that the surfaces are biocompatible and non-cytotoxic. However, samples subjected to alkaline treatment exhibited qualitatively superior bioactivity and in vitro behavior and among them, the blasted sample produced the surface with best performance.