Yi Su, Yuying Chen, Hengyuan Zhang, Shaobo Liu, Peng Guo
{"title":"多维纳米材料对高阻尼聚氨酯的协同增强效应","authors":"Yi Su, Yuying Chen, Hengyuan Zhang, Shaobo Liu, Peng Guo","doi":"10.1007/s42464-024-00275-1","DOIUrl":null,"url":null,"abstract":"<p>Nanomaterials are increasingly used to improve the mechanical or damping properties of polymers due to their high specific surface area, surface activity and exotic physicochemical properties. There may be a disadvantage to using only one type of nanofiller, as evidenced by an increase in certain properties and a decrease in others. To improve the damping and mechanical properties simultaneously, a promising method has been proposed to use nanofillers with many different dimensions. However, their synergistic enhancement is still little explored. In this study, four nanofillers of different dimensions, namely AO-2246 (0D), carbon nanotubes (CNTs, 1D), sericite (2D), and tetra-needle-like ZnO whiskers (T-ZnOw, 3D), were selected to enhance the properties of millable polyurethane (MPU) matrix. The synergistic enhancement effect was evaluated by analysing the static and dynamic mechanical properties of the composites. Orthogonal test results were used to understand the importance of the four nanofillers and the interactions among them. A multi-index evaluation method based on Analytic Hierarchy Process (AHP) was established to obtain the optimal gradation of the four fillers to maximise their synergistic enhancement effect. The results showed that the gradation of the different nanofillers was an important factor that had a significant effect on the synergistic enhancement. The optimised polyurethane showed improvements in peak loss factor (<i>η</i><sub>max</sub>) of 25.18%, effective damping temperature range (<i>ΔT</i><sub><i>0.3</i></sub>) of 24.02%, and glass transition temperature (<i>T</i><sub><i>g</i></sub>) of 180.39%.</p>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"40 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic enhancement effect of multi-dimensional nanomaterials on high-damping polyurethane\",\"authors\":\"Yi Su, Yuying Chen, Hengyuan Zhang, Shaobo Liu, Peng Guo\",\"doi\":\"10.1007/s42464-024-00275-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanomaterials are increasingly used to improve the mechanical or damping properties of polymers due to their high specific surface area, surface activity and exotic physicochemical properties. There may be a disadvantage to using only one type of nanofiller, as evidenced by an increase in certain properties and a decrease in others. To improve the damping and mechanical properties simultaneously, a promising method has been proposed to use nanofillers with many different dimensions. However, their synergistic enhancement is still little explored. In this study, four nanofillers of different dimensions, namely AO-2246 (0D), carbon nanotubes (CNTs, 1D), sericite (2D), and tetra-needle-like ZnO whiskers (T-ZnOw, 3D), were selected to enhance the properties of millable polyurethane (MPU) matrix. The synergistic enhancement effect was evaluated by analysing the static and dynamic mechanical properties of the composites. Orthogonal test results were used to understand the importance of the four nanofillers and the interactions among them. A multi-index evaluation method based on Analytic Hierarchy Process (AHP) was established to obtain the optimal gradation of the four fillers to maximise their synergistic enhancement effect. The results showed that the gradation of the different nanofillers was an important factor that had a significant effect on the synergistic enhancement. The optimised polyurethane showed improvements in peak loss factor (<i>η</i><sub>max</sub>) of 25.18%, effective damping temperature range (<i>ΔT</i><sub><i>0.3</i></sub>) of 24.02%, and glass transition temperature (<i>T</i><sub><i>g</i></sub>) of 180.39%.</p>\",\"PeriodicalId\":662,\"journal\":{\"name\":\"Journal of Rubber Research\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rubber Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s42464-024-00275-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rubber Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s42464-024-00275-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Synergistic enhancement effect of multi-dimensional nanomaterials on high-damping polyurethane
Nanomaterials are increasingly used to improve the mechanical or damping properties of polymers due to their high specific surface area, surface activity and exotic physicochemical properties. There may be a disadvantage to using only one type of nanofiller, as evidenced by an increase in certain properties and a decrease in others. To improve the damping and mechanical properties simultaneously, a promising method has been proposed to use nanofillers with many different dimensions. However, their synergistic enhancement is still little explored. In this study, four nanofillers of different dimensions, namely AO-2246 (0D), carbon nanotubes (CNTs, 1D), sericite (2D), and tetra-needle-like ZnO whiskers (T-ZnOw, 3D), were selected to enhance the properties of millable polyurethane (MPU) matrix. The synergistic enhancement effect was evaluated by analysing the static and dynamic mechanical properties of the composites. Orthogonal test results were used to understand the importance of the four nanofillers and the interactions among them. A multi-index evaluation method based on Analytic Hierarchy Process (AHP) was established to obtain the optimal gradation of the four fillers to maximise their synergistic enhancement effect. The results showed that the gradation of the different nanofillers was an important factor that had a significant effect on the synergistic enhancement. The optimised polyurethane showed improvements in peak loss factor (ηmax) of 25.18%, effective damping temperature range (ΔT0.3) of 24.02%, and glass transition temperature (Tg) of 180.39%.
期刊介绍:
The Journal of Rubber Research is devoted to both natural and synthetic rubbers, as well as to related disciplines. The scope of the journal encompasses all aspects of rubber from the core disciplines of biology, physics and chemistry, as well as economics. As a specialised field, rubber science includes within its niche a vast potential of innovative and value-added research areas yet to be explored. This peer reviewed publication focuses on the results of active experimental research and authoritative reviews on all aspects of rubber science.
The Journal of Rubber Research welcomes research on:
the upstream, including crop management, crop improvement and protection, and biotechnology;
the midstream, including processing and effluent management;
the downstream, including rubber engineering and product design, advanced rubber technology, latex science and technology, and chemistry and materials exploratory;
economics, including the economics of rubber production, consumption, and market analysis.
The Journal of Rubber Research serves to build a collective knowledge base while communicating information and validating the quality of research within the discipline, and bringing together work from experts in rubber science and related disciplines.
Scientists in both academia and industry involved in researching and working with all aspects of rubber will find this journal to be both source of information and a gateway for their own publications.