A 型 Calabi-Yau 三折的自形和商的分类

IF 0.7 2区 数学 Q2 MATHEMATICS
Martina Monti
{"title":"A 型 Calabi-Yau 三折的自形和商的分类","authors":"Martina Monti","doi":"10.1016/j.jpaa.2024.107796","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of the paper is to investigate the only two families <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>G</mi></mrow><mrow><mi>A</mi></mrow></msubsup></math></span> of Calabi-Yau 3-folds <span><math><mi>A</mi><mo>/</mo><mi>G</mi></math></span> with <em>A</em> an abelian 3-fold and <span><math><mi>G</mi><mo>≤</mo><mtext>Aut</mtext><mo>(</mo><mi>A</mi><mo>)</mo></math></span> a finite group acting freely: one is constructed in <span><span>[11]</span></span> and the other is presented here. We provide a complete classification of the automorphism group of <span><math><mi>X</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>G</mi></mrow><mrow><mi>A</mi></mrow></msubsup></math></span>. Additionally, we construct and classify the quotients <span><math><mi>X</mi><mo>/</mo><mi>ϒ</mi></math></span> for any <span><math><mi>ϒ</mi><mo>≤</mo><mtext>Aut</mtext><mo>(</mo><mi>X</mi><mo>)</mo></math></span>. Specifically, for those groups ϒ that preserve the volume form of <em>X</em> then <span><math><mi>X</mi><mo>/</mo><mi>ϒ</mi></math></span> admits a desingularization <em>Y</em> which is a Calabi-Yau 3-fold: we compute the Hodge numbers and the fundamental group of these <em>Y</em>, thereby determining all topological in-equivalent Calabi-Yau 3-folds obtained in this way.</p></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The classification of automorphisms and quotients of Calabi-Yau threefolds of type A\",\"authors\":\"Martina Monti\",\"doi\":\"10.1016/j.jpaa.2024.107796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of the paper is to investigate the only two families <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>G</mi></mrow><mrow><mi>A</mi></mrow></msubsup></math></span> of Calabi-Yau 3-folds <span><math><mi>A</mi><mo>/</mo><mi>G</mi></math></span> with <em>A</em> an abelian 3-fold and <span><math><mi>G</mi><mo>≤</mo><mtext>Aut</mtext><mo>(</mo><mi>A</mi><mo>)</mo></math></span> a finite group acting freely: one is constructed in <span><span>[11]</span></span> and the other is presented here. We provide a complete classification of the automorphism group of <span><math><mi>X</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>G</mi></mrow><mrow><mi>A</mi></mrow></msubsup></math></span>. Additionally, we construct and classify the quotients <span><math><mi>X</mi><mo>/</mo><mi>ϒ</mi></math></span> for any <span><math><mi>ϒ</mi><mo>≤</mo><mtext>Aut</mtext><mo>(</mo><mi>X</mi><mo>)</mo></math></span>. Specifically, for those groups ϒ that preserve the volume form of <em>X</em> then <span><math><mi>X</mi><mo>/</mo><mi>ϒ</mi></math></span> admits a desingularization <em>Y</em> which is a Calabi-Yau 3-fold: we compute the Hodge numbers and the fundamental group of these <em>Y</em>, thereby determining all topological in-equivalent Calabi-Yau 3-folds obtained in this way.</p></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001932\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001932","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在研究 Calabi-Yau 3 折叠体中仅有的两个具有无常 3 折叠体和自由作用有限群的系列:一个是在《......》中构建的,另一个是在本文中提出的。我们提供了.的自变群的完整分类。 此外,我们还构造并分类了任意.的商。具体地说,对于那些保留其体积形式的群ϒ,我们会给出一个卡拉比优 3 折叠的去奇化:我们计算了这些群的霍奇数和基群,从而确定了以这种方式得到的所有拓扑内等价卡拉比优 3 折叠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The classification of automorphisms and quotients of Calabi-Yau threefolds of type A

The aim of the paper is to investigate the only two families FGA of Calabi-Yau 3-folds A/G with A an abelian 3-fold and GAut(A) a finite group acting freely: one is constructed in [11] and the other is presented here. We provide a complete classification of the automorphism group of XFGA. Additionally, we construct and classify the quotients X/ϒ for any ϒAut(X). Specifically, for those groups ϒ that preserve the volume form of X then X/ϒ admits a desingularization Y which is a Calabi-Yau 3-fold: we compute the Hodge numbers and the fundamental group of these Y, thereby determining all topological in-equivalent Calabi-Yau 3-folds obtained in this way.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信