{"title":"观测反PT对称电路中的杨氏双缝现象","authors":"Keyu Pan, Xiumei Wang, Xizhou Shen, Haoyi Zhou, Xingping Zhou","doi":"10.1088/1361-6463/ad73e2","DOIUrl":null,"url":null,"abstract":"In the last few decades, interference has been extensively studied in both the quantum and classical fields, which reveals light volatility and is widely used for high-precision measurements. We have put forward the phenomenon in which the discrete diffraction and interference phenomena, presented by the time-varying voltage of a Su–Schrieffer–Heeger circuit model with an anti-PT (APT) symmetry. To demonstrate Young’s double-slit phenomenon in an APT circuit, we initially explore the coupled mode theory of voltage in the broken phase, observe discrete diffraction under single excitation and interference under double excitations. Furthermore, we design a phase-shifting circuit to observe the effects of phase difference and distance on discrete interference. Our work combines the effects in optics with condensed matter physics, show the Young’s double-slit phenomenon in electrical circuits theoretically and experimentally.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observation of Young’s double-slit phenomenon in anti-PT-symmetric electrical circuits\",\"authors\":\"Keyu Pan, Xiumei Wang, Xizhou Shen, Haoyi Zhou, Xingping Zhou\",\"doi\":\"10.1088/1361-6463/ad73e2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last few decades, interference has been extensively studied in both the quantum and classical fields, which reveals light volatility and is widely used for high-precision measurements. We have put forward the phenomenon in which the discrete diffraction and interference phenomena, presented by the time-varying voltage of a Su–Schrieffer–Heeger circuit model with an anti-PT (APT) symmetry. To demonstrate Young’s double-slit phenomenon in an APT circuit, we initially explore the coupled mode theory of voltage in the broken phase, observe discrete diffraction under single excitation and interference under double excitations. Furthermore, we design a phase-shifting circuit to observe the effects of phase difference and distance on discrete interference. Our work combines the effects in optics with condensed matter physics, show the Young’s double-slit phenomenon in electrical circuits theoretically and experimentally.\",\"PeriodicalId\":16789,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad73e2\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad73e2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Observation of Young’s double-slit phenomenon in anti-PT-symmetric electrical circuits
In the last few decades, interference has been extensively studied in both the quantum and classical fields, which reveals light volatility and is widely used for high-precision measurements. We have put forward the phenomenon in which the discrete diffraction and interference phenomena, presented by the time-varying voltage of a Su–Schrieffer–Heeger circuit model with an anti-PT (APT) symmetry. To demonstrate Young’s double-slit phenomenon in an APT circuit, we initially explore the coupled mode theory of voltage in the broken phase, observe discrete diffraction under single excitation and interference under double excitations. Furthermore, we design a phase-shifting circuit to observe the effects of phase difference and distance on discrete interference. Our work combines the effects in optics with condensed matter physics, show the Young’s double-slit phenomenon in electrical circuits theoretically and experimentally.
期刊介绍:
This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.