{"title":"提高自旋场效应晶体管性能的策略--插入有效的中间层石墨烯","authors":"Tongtong Wang, Si-Cong Zhu, Fangqi Liu","doi":"10.1088/1361-6463/ad759e","DOIUrl":null,"url":null,"abstract":"Novel spin field effect transistors (FETs) with metal contacts are designed to reduce the high Schottky barrier height (SBH) due to Fermi pinning, reducing energy consumption and increasing their performance. Herein, we effectively enhance the conductivity (10<sup>6</sup> orders of magnitude) and current threshold of the FETs by introducing interlayer graphene in the contact interface between the semiconductor blue phosphorus and the metal, thereby reducing the interlayer resistance. Electronic structure analysis shows that Blue Phosphorus–Graphene–Cu modulates the lowest SBH, yielding a larger FETs conductance compared to other metal systems. The spin injection further enhances the efficiency of FETs as rectifiers (enhanced 13%). This theoretical work provides rational guidance for realizing innovations in next-generation high-performance transistor technology, demonstrating the inherent potential of the regulatory mechanism.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategy to enhance the performance of spin field effect transistors-insert effective intermediate layer graphene\",\"authors\":\"Tongtong Wang, Si-Cong Zhu, Fangqi Liu\",\"doi\":\"10.1088/1361-6463/ad759e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novel spin field effect transistors (FETs) with metal contacts are designed to reduce the high Schottky barrier height (SBH) due to Fermi pinning, reducing energy consumption and increasing their performance. Herein, we effectively enhance the conductivity (10<sup>6</sup> orders of magnitude) and current threshold of the FETs by introducing interlayer graphene in the contact interface between the semiconductor blue phosphorus and the metal, thereby reducing the interlayer resistance. Electronic structure analysis shows that Blue Phosphorus–Graphene–Cu modulates the lowest SBH, yielding a larger FETs conductance compared to other metal systems. The spin injection further enhances the efficiency of FETs as rectifiers (enhanced 13%). This theoretical work provides rational guidance for realizing innovations in next-generation high-performance transistor technology, demonstrating the inherent potential of the regulatory mechanism.\",\"PeriodicalId\":16789,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad759e\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad759e","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Strategy to enhance the performance of spin field effect transistors-insert effective intermediate layer graphene
Novel spin field effect transistors (FETs) with metal contacts are designed to reduce the high Schottky barrier height (SBH) due to Fermi pinning, reducing energy consumption and increasing their performance. Herein, we effectively enhance the conductivity (106 orders of magnitude) and current threshold of the FETs by introducing interlayer graphene in the contact interface between the semiconductor blue phosphorus and the metal, thereby reducing the interlayer resistance. Electronic structure analysis shows that Blue Phosphorus–Graphene–Cu modulates the lowest SBH, yielding a larger FETs conductance compared to other metal systems. The spin injection further enhances the efficiency of FETs as rectifiers (enhanced 13%). This theoretical work provides rational guidance for realizing innovations in next-generation high-performance transistor technology, demonstrating the inherent potential of the regulatory mechanism.
期刊介绍:
This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.