用于锌-空气充电电池的无粘结剂锰/钴双层双功能催化剂的优化设计

IF 3.1 4区 工程技术 Q2 ELECTROCHEMISTRY
Takayuki Kiso, Tomoya Higo, Wataru Yoshida, Yu Katayama, Masaharu Nakayama
{"title":"用于锌-空气充电电池的无粘结剂锰/钴双层双功能催化剂的优化设计","authors":"Takayuki Kiso, Tomoya Higo, Wataru Yoshida, Yu Katayama, Masaharu Nakayama","doi":"10.1149/1945-7111/ad7294","DOIUrl":null,"url":null,"abstract":"We have developed a bilayer film comprising cobalt oxyhydroxide (CoOOH) underlayer and manganese dioxide (MnO<sub>2</sub>) upper layer, which are active toward oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), respectively. The bilayer bifunctional catalyst is synthesized by electrodepositing cobalt hydroxide (Co(OH)<sub>2</sub>) on a porous carbon paper (CP) and subsequently immersing the obtained Co(OH)<sub>2</sub>/CP in a potassium permanganate (KMnO<sub>4</sub>) solution without binders or conductive additives. Specifically, electron transfer between the already-deposited Co(OH)<sub>2</sub> and MnO<sub>4</sub>\n<sup>–</sup> proceeded in the solution, yielding MnO<sub>2</sub>, until all the Co ions become trivalent, after which self-terminates. The proposed method only allows for the construction of the minimum required bifunctional catalyst only at the reaction site of the gas-diffusion electrode, i.e., at the so-called three-phase interface, thus remarkably increasing catalyst utilization while improving reactant and product diffusions. The developed catalyst shows stable MnO<sub>2</sub>/CoOOH cycles at |20| mA cm<sup>–2</sup> with a minimal difference (0.764 V) between the OER and ORR potentials, reflecting the structural advantage of the proposed catalyst. This work proposes efficient bifunctional catalysts having spatially separated OER/ORR reactive sites that can be synthesized via the simple and scalable electrochemical method, which does not require the skill and optimization of binder and electron-conducting additives.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"15 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Design of a Binder-Free Manganese/Cobalt Bilayer Bifunctional Catalyst for Rechargeable Zinc–Air Batteries\",\"authors\":\"Takayuki Kiso, Tomoya Higo, Wataru Yoshida, Yu Katayama, Masaharu Nakayama\",\"doi\":\"10.1149/1945-7111/ad7294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a bilayer film comprising cobalt oxyhydroxide (CoOOH) underlayer and manganese dioxide (MnO<sub>2</sub>) upper layer, which are active toward oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), respectively. The bilayer bifunctional catalyst is synthesized by electrodepositing cobalt hydroxide (Co(OH)<sub>2</sub>) on a porous carbon paper (CP) and subsequently immersing the obtained Co(OH)<sub>2</sub>/CP in a potassium permanganate (KMnO<sub>4</sub>) solution without binders or conductive additives. Specifically, electron transfer between the already-deposited Co(OH)<sub>2</sub> and MnO<sub>4</sub>\\n<sup>–</sup> proceeded in the solution, yielding MnO<sub>2</sub>, until all the Co ions become trivalent, after which self-terminates. The proposed method only allows for the construction of the minimum required bifunctional catalyst only at the reaction site of the gas-diffusion electrode, i.e., at the so-called three-phase interface, thus remarkably increasing catalyst utilization while improving reactant and product diffusions. The developed catalyst shows stable MnO<sub>2</sub>/CoOOH cycles at |20| mA cm<sup>–2</sup> with a minimal difference (0.764 V) between the OER and ORR potentials, reflecting the structural advantage of the proposed catalyst. This work proposes efficient bifunctional catalysts having spatially separated OER/ORR reactive sites that can be synthesized via the simple and scalable electrochemical method, which does not require the skill and optimization of binder and electron-conducting additives.\",\"PeriodicalId\":17364,\"journal\":{\"name\":\"Journal of The Electrochemical Society\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Electrochemical Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1149/1945-7111/ad7294\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad7294","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种双层薄膜,由氢氧化钴(CoOOOH)下层和二氧化锰(MnO2)上层组成,分别对氧进化反应(OER)和氧还原反应(ORR)具有活性。这种双层双功能催化剂是通过在多孔碳纸(CP)上电沉积氢氧化钴(Co(OH)2),然后将得到的 Co(OH)2/CP 浸入不含粘合剂或导电添加剂的高锰酸钾(KMnO4)溶液中合成的。具体来说,已经沉积的 Co(OH)2 和 MnO4- 在溶液中进行电子转移,生成 MnO2,直到所有的 Co 离子都变成三价,然后自终止。所提出的方法只允许在气体扩散电极的反应部位,即所谓的三相界面上构建所需的最低双功能催化剂,从而显著提高了催化剂的利用率,同时改善了反应物和产物的扩散。所开发的催化剂在 |20| mA cm-2 下显示出稳定的 MnO2/CoOOH 循环,OER 和 ORR 电位之间的差异极小(0.764 V),这反映了所提出的催化剂的结构优势。这项工作提出了具有空间分离的 OER/ORR 反应位点的高效双功能催化剂,这种催化剂可以通过简单、可扩展的电化学方法合成,不需要掌握粘合剂和电子传导添加剂的技术和优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Design of a Binder-Free Manganese/Cobalt Bilayer Bifunctional Catalyst for Rechargeable Zinc–Air Batteries
We have developed a bilayer film comprising cobalt oxyhydroxide (CoOOH) underlayer and manganese dioxide (MnO2) upper layer, which are active toward oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), respectively. The bilayer bifunctional catalyst is synthesized by electrodepositing cobalt hydroxide (Co(OH)2) on a porous carbon paper (CP) and subsequently immersing the obtained Co(OH)2/CP in a potassium permanganate (KMnO4) solution without binders or conductive additives. Specifically, electron transfer between the already-deposited Co(OH)2 and MnO4 proceeded in the solution, yielding MnO2, until all the Co ions become trivalent, after which self-terminates. The proposed method only allows for the construction of the minimum required bifunctional catalyst only at the reaction site of the gas-diffusion electrode, i.e., at the so-called three-phase interface, thus remarkably increasing catalyst utilization while improving reactant and product diffusions. The developed catalyst shows stable MnO2/CoOOH cycles at |20| mA cm–2 with a minimal difference (0.764 V) between the OER and ORR potentials, reflecting the structural advantage of the proposed catalyst. This work proposes efficient bifunctional catalysts having spatially separated OER/ORR reactive sites that can be synthesized via the simple and scalable electrochemical method, which does not require the skill and optimization of binder and electron-conducting additives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
12.80%
发文量
1369
审稿时长
1.5 months
期刊介绍: The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信