基于双金属 MOFs 的电极用于同时电化学检测肾上腺素和去甲肾上腺素

IF 3.1 4区 工程技术 Q2 ELECTROCHEMISTRY
Charlin Soosaimanickam, Kathiresan Murugavel, Subbiah Alwarappan
{"title":"基于双金属 MOFs 的电极用于同时电化学检测肾上腺素和去甲肾上腺素","authors":"Charlin Soosaimanickam, Kathiresan Murugavel, Subbiah Alwarappan","doi":"10.1149/1945-7111/ad6c80","DOIUrl":null,"url":null,"abstract":"We designed a bi-metallic Co-Ni/BTC/4,4′-BiPy metal organic frameworks (MOFs) as an electrode material for the electrochemical detection of epinephrine and nor-epinephrine. The bi-metallic MOFs were synthesized by a solvothermal method. Following this, the bimetallic MOFs were modified with BTC and amine rich 4,4′-BiPy to improve charge transfer kinetics through non-covalent <italic toggle=\"yes\">π</italic>–<italic toggle=\"yes\">π</italic> interaction. This modified electrode was employed as a sensing platform for the simultaneous electrochemical detection of epinephrine and nor-epinephrine. The MOFs modified platform exhibited a 10–50 μM linear range with a limit of detection of 0.724 μM ± 0.128 (N = 3) and 0.815 μM ± 0.124 (N = 3), a sensitivity of 0.583 and 0.505 μA μM<sup>−1</sup> cm<sup>−2</sup> corresponding to epinephrine and nor-epinephrine detection. Finally, the electrochemical sensor was tested in blood and urine samples spiked with known concentrations of epinephrine and nor-epinephrine. Results confirmed the usefulness of the proposed platform for the detection of epinephrine and nor-epinephrine in clinical samples.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"10 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bimetallic MOFs-Based Electrodes for the Simultaneous Electrochemical Detection of Epinephrine and Nor-Epinephrine\",\"authors\":\"Charlin Soosaimanickam, Kathiresan Murugavel, Subbiah Alwarappan\",\"doi\":\"10.1149/1945-7111/ad6c80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We designed a bi-metallic Co-Ni/BTC/4,4′-BiPy metal organic frameworks (MOFs) as an electrode material for the electrochemical detection of epinephrine and nor-epinephrine. The bi-metallic MOFs were synthesized by a solvothermal method. Following this, the bimetallic MOFs were modified with BTC and amine rich 4,4′-BiPy to improve charge transfer kinetics through non-covalent <italic toggle=\\\"yes\\\">π</italic>–<italic toggle=\\\"yes\\\">π</italic> interaction. This modified electrode was employed as a sensing platform for the simultaneous electrochemical detection of epinephrine and nor-epinephrine. The MOFs modified platform exhibited a 10–50 μM linear range with a limit of detection of 0.724 μM ± 0.128 (N = 3) and 0.815 μM ± 0.124 (N = 3), a sensitivity of 0.583 and 0.505 μA μM<sup>−1</sup> cm<sup>−2</sup> corresponding to epinephrine and nor-epinephrine detection. Finally, the electrochemical sensor was tested in blood and urine samples spiked with known concentrations of epinephrine and nor-epinephrine. Results confirmed the usefulness of the proposed platform for the detection of epinephrine and nor-epinephrine in clinical samples.\",\"PeriodicalId\":17364,\"journal\":{\"name\":\"Journal of The Electrochemical Society\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Electrochemical Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1149/1945-7111/ad6c80\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad6c80","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

我们设计了一种 Co-Ni/BTC/4,4′-BiPy 双金属金属有机框架(MOFs)作为电化学检测肾上腺素和去甲肾上腺素的电极材料。双金属 MOFs 是通过溶热法合成的。随后,用 BTC 和富含胺的 4,4′-BiPy 对双金属 MOFs 进行修饰,通过非共价的 π-π 相互作用改善电荷转移动力学。该修饰电极被用作同时电化学检测肾上腺素和去甲肾上腺素的传感平台。经 MOFs 修饰的平台的线性范围为 10-50 μM,检出限分别为 0.724 μM ± 0.128(N = 3)和 0.815 μM ± 0.124(N = 3),灵敏度分别为 0.583 和 0.505 μA μM-1 cm-2,对应于肾上腺素和去甲肾上腺素的检测。最后,在添加了已知浓度的肾上腺素和去甲肾上腺素的血液和尿液样本中对电化学传感器进行了测试。结果证实,所提议的平台可用于检测临床样本中的肾上腺素和去甲肾上腺素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bimetallic MOFs-Based Electrodes for the Simultaneous Electrochemical Detection of Epinephrine and Nor-Epinephrine
We designed a bi-metallic Co-Ni/BTC/4,4′-BiPy metal organic frameworks (MOFs) as an electrode material for the electrochemical detection of epinephrine and nor-epinephrine. The bi-metallic MOFs were synthesized by a solvothermal method. Following this, the bimetallic MOFs were modified with BTC and amine rich 4,4′-BiPy to improve charge transfer kinetics through non-covalent ππ interaction. This modified electrode was employed as a sensing platform for the simultaneous electrochemical detection of epinephrine and nor-epinephrine. The MOFs modified platform exhibited a 10–50 μM linear range with a limit of detection of 0.724 μM ± 0.128 (N = 3) and 0.815 μM ± 0.124 (N = 3), a sensitivity of 0.583 and 0.505 μA μM−1 cm−2 corresponding to epinephrine and nor-epinephrine detection. Finally, the electrochemical sensor was tested in blood and urine samples spiked with known concentrations of epinephrine and nor-epinephrine. Results confirmed the usefulness of the proposed platform for the detection of epinephrine and nor-epinephrine in clinical samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
12.80%
发文量
1369
审稿时长
1.5 months
期刊介绍: The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信