{"title":"低温直流和脉冲电流下 LiCl-KCl-CsCl-K2SiF6 熔体中硅的电沉积","authors":"Yulia Parasotchenko, Andrey Suzdaltsev, Yuriy Zaykov","doi":"10.1149/1945-7111/ad73a8","DOIUrl":null,"url":null,"abstract":"In this work, the effect of electrolysis modes and their parameters on the morphology of the silicon deposits on glassy carbon were studied. In direct current mode it was found that an increase in current density and deposition time changes the morphology of the silicon from a coating to a deposit with a complex surface. Scanning electron microscopy showed that silicon films produced at low current densities and a short deposition time are represented by spherical particles with a diameter of less than 1 μm. The pulse current mode made it possible to increase the cathode density of the deposition current, and the pulse current density to an average of ≈250 mA cm<sup>−2</sup> does not lead to the formation of a large amount of dendritic deposit. It was found that a low frequency makes it possible to obtain higher-quality silicon coatings, because when the frequency increases, the coating most often does not cover the entire electrode. The high value of the duty cycle, even at low pulse current densities, always leads to the formation of dendrites. An increase in the total deposition time also leads to an increase in the amount of deposit and the formation of dendrites.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"45 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrodeposition of Silicon in the Low-Temperature LiCl-KCl-CsCl-K2SiF6 Melt Under Direct and Pulse Current\",\"authors\":\"Yulia Parasotchenko, Andrey Suzdaltsev, Yuriy Zaykov\",\"doi\":\"10.1149/1945-7111/ad73a8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the effect of electrolysis modes and their parameters on the morphology of the silicon deposits on glassy carbon were studied. In direct current mode it was found that an increase in current density and deposition time changes the morphology of the silicon from a coating to a deposit with a complex surface. Scanning electron microscopy showed that silicon films produced at low current densities and a short deposition time are represented by spherical particles with a diameter of less than 1 μm. The pulse current mode made it possible to increase the cathode density of the deposition current, and the pulse current density to an average of ≈250 mA cm<sup>−2</sup> does not lead to the formation of a large amount of dendritic deposit. It was found that a low frequency makes it possible to obtain higher-quality silicon coatings, because when the frequency increases, the coating most often does not cover the entire electrode. The high value of the duty cycle, even at low pulse current densities, always leads to the formation of dendrites. An increase in the total deposition time also leads to an increase in the amount of deposit and the formation of dendrites.\",\"PeriodicalId\":17364,\"journal\":{\"name\":\"Journal of The Electrochemical Society\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Electrochemical Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1149/1945-7111/ad73a8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad73a8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
这项工作研究了电解模式及其参数对玻璃碳上硅沉积物形态的影响。研究发现,在直流电模式下,电流密度和沉积时间的增加会改变硅的形态,使其从涂层变为表面复杂的沉积物。扫描电子显微镜显示,在低电流密度和短沉积时间下产生的硅薄膜是直径小于 1 μm 的球形颗粒。脉冲电流模式可以提高沉积电流的阴极密度,平均≈250 mA cm-2的脉冲电流密度不会导致形成大量树枝状沉积物。研究发现,低频率可以获得更高质量的硅涂层,因为当频率增加时,涂层往往无法覆盖整个电极。即使在低脉冲电流密度下,高占空比也会导致树枝状沉积的形成。总沉积时间的增加也会导致沉积量的增加和树枝状晶粒的形成。
Electrodeposition of Silicon in the Low-Temperature LiCl-KCl-CsCl-K2SiF6 Melt Under Direct and Pulse Current
In this work, the effect of electrolysis modes and their parameters on the morphology of the silicon deposits on glassy carbon were studied. In direct current mode it was found that an increase in current density and deposition time changes the morphology of the silicon from a coating to a deposit with a complex surface. Scanning electron microscopy showed that silicon films produced at low current densities and a short deposition time are represented by spherical particles with a diameter of less than 1 μm. The pulse current mode made it possible to increase the cathode density of the deposition current, and the pulse current density to an average of ≈250 mA cm−2 does not lead to the formation of a large amount of dendritic deposit. It was found that a low frequency makes it possible to obtain higher-quality silicon coatings, because when the frequency increases, the coating most often does not cover the entire electrode. The high value of the duty cycle, even at low pulse current densities, always leads to the formation of dendrites. An increase in the total deposition time also leads to an increase in the amount of deposit and the formation of dendrites.
期刊介绍:
The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.