{"title":"碳纤维、玻璃纤维和玄武岩纤维增强的热塑性聚酯弹性体复合材料中添加六方氮化硼的效果研究","authors":"Okan Gul, Nevin Gamze Karsli, Cihat Gul, Ali Durmus, Taner Yilmaz","doi":"10.1007/s00289-024-05471-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the effect of hexagonal boron nitride (hBN) addition at different weight ratios to thermoplastic polyester elastomer (TPEE) reinforced with three different fiber types, namely carbon fiber (CF), glass fiber (GF) and basalt fiber (BF), on the mechanical, tribological and thermal properties of the composites was investigated. Adhesive wear test for tribological analysis, tensile and three-point bending tests for mechanical analysis, differential scanning calorimetry and thermogravimetric analyses for thermal investigation and scanning electron microscopy analysis for morphological evaluation were applied. The results showed that the addition of hBN to fiber-reinforced TPEE composites, regardless of the fiber type, and the increasing weight ratio of hBN improved the wear, mechanical and thermal properties of the composites. However, when comparing the synergistic effect of hBN when used simultaneously with fiber reinforcement on the basis of fiber type, CF was found to outperform GF and BF fiber types and hybrid reinforced composites containing 10 wt% hBN and CF to exhibit superior tribological, mechanical and thermal properties. It is also concluded that BF performs at a comparable level to GF and therefore can be used instead of GF in some applications.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":737,"journal":{"name":"Polymer Bulletin","volume":"81 17","pages":"16219 - 16239"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the effect of hexagonal boron nitride addition to thermoplastic polyester elastomer composites reinforced with carbon, glass and basalt fibers\",\"authors\":\"Okan Gul, Nevin Gamze Karsli, Cihat Gul, Ali Durmus, Taner Yilmaz\",\"doi\":\"10.1007/s00289-024-05471-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the effect of hexagonal boron nitride (hBN) addition at different weight ratios to thermoplastic polyester elastomer (TPEE) reinforced with three different fiber types, namely carbon fiber (CF), glass fiber (GF) and basalt fiber (BF), on the mechanical, tribological and thermal properties of the composites was investigated. Adhesive wear test for tribological analysis, tensile and three-point bending tests for mechanical analysis, differential scanning calorimetry and thermogravimetric analyses for thermal investigation and scanning electron microscopy analysis for morphological evaluation were applied. The results showed that the addition of hBN to fiber-reinforced TPEE composites, regardless of the fiber type, and the increasing weight ratio of hBN improved the wear, mechanical and thermal properties of the composites. However, when comparing the synergistic effect of hBN when used simultaneously with fiber reinforcement on the basis of fiber type, CF was found to outperform GF and BF fiber types and hybrid reinforced composites containing 10 wt% hBN and CF to exhibit superior tribological, mechanical and thermal properties. It is also concluded that BF performs at a comparable level to GF and therefore can be used instead of GF in some applications.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":737,\"journal\":{\"name\":\"Polymer Bulletin\",\"volume\":\"81 17\",\"pages\":\"16219 - 16239\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Bulletin\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00289-024-05471-y\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Bulletin","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00289-024-05471-y","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Study of the effect of hexagonal boron nitride addition to thermoplastic polyester elastomer composites reinforced with carbon, glass and basalt fibers
In this study, the effect of hexagonal boron nitride (hBN) addition at different weight ratios to thermoplastic polyester elastomer (TPEE) reinforced with three different fiber types, namely carbon fiber (CF), glass fiber (GF) and basalt fiber (BF), on the mechanical, tribological and thermal properties of the composites was investigated. Adhesive wear test for tribological analysis, tensile and three-point bending tests for mechanical analysis, differential scanning calorimetry and thermogravimetric analyses for thermal investigation and scanning electron microscopy analysis for morphological evaluation were applied. The results showed that the addition of hBN to fiber-reinforced TPEE composites, regardless of the fiber type, and the increasing weight ratio of hBN improved the wear, mechanical and thermal properties of the composites. However, when comparing the synergistic effect of hBN when used simultaneously with fiber reinforcement on the basis of fiber type, CF was found to outperform GF and BF fiber types and hybrid reinforced composites containing 10 wt% hBN and CF to exhibit superior tribological, mechanical and thermal properties. It is also concluded that BF performs at a comparable level to GF and therefore can be used instead of GF in some applications.
期刊介绍:
"Polymer Bulletin" is a comprehensive academic journal on polymer science founded in 1988. It was founded under the initiative of the late Mr. Wang Baoren, a famous Chinese chemist and educator. This journal is co-sponsored by the Chinese Chemical Society, the Institute of Chemistry, and the Chinese Academy of Sciences and is supervised by the China Association for Science and Technology. It is a core journal and is publicly distributed at home and abroad.
"Polymer Bulletin" is a monthly magazine with multiple columns, including a project application guide, outlook, review, research papers, highlight reviews, polymer education and teaching, information sharing, interviews, polymer science popularization, etc. The journal is included in the CSCD Chinese Science Citation Database. It serves as the source journal for Chinese scientific and technological paper statistics and the source journal of Peking University's "Overview of Chinese Core Journals."