Azzah M. Alghamdi, I. Guizani, E. M. Abdallah, M. O. Farea, M. A. Morsi, Ibrahim A. Alhagri, Talal F. Qahtan, Ahmed N. Al-Hakimi, Sadeq M. Al-Hazmy, S. El-Sayed Saeed, Abuzar E. A. E. Albadri
{"title":"增强 PEO/CS 掺杂 TiO2 纳米粒子在食品包装应用中的光学特性和抗菌功效","authors":"Azzah M. Alghamdi, I. Guizani, E. M. Abdallah, M. O. Farea, M. A. Morsi, Ibrahim A. Alhagri, Talal F. Qahtan, Ahmed N. Al-Hakimi, Sadeq M. Al-Hazmy, S. El-Sayed Saeed, Abuzar E. A. E. Albadri","doi":"10.1007/s00289-024-05472-x","DOIUrl":null,"url":null,"abstract":"<div><p>Utilizing the solution casting technique, polymer nanocomposites (PNCs) films including polyethylene oxide and chitosan (PEO/CS) doped with titanium dioxide nanoparticles (TiO<sub>2</sub> NPs) as nanoceramic were successfully synthesized. The study investigated how varying TiO<sub>2</sub> nanoparticle concentrations influenced the structural, optical properties, and antibacterial activity of the polymeric matrix. XRD patterns revealed an increase in the amorphous nature of the polymer blend as the content of TiO<sub>2</sub> NPs inside the PEO/CS blend grew. The FT-IR analysis confirmed the interaction between TiO<sub>2</sub> NPs and the PEO/CS blend. This confirmation is attributed to the observed vibrational changes upon the incorporation of TiO<sub>2</sub> dopant into the polymer matrix. The UV–visible spectrum aided in the determination of optical energy band gaps (both direct and indirect), showing reductions in both <i>E</i><sub>gd</sub> and <i>E</i><sub>gin</sub> with higher TiO<sub>2</sub> concentrations. SEM highlighted the partial compatibility between PEO/CS and TiO<sub>2</sub>, while transmission electron microscopy depicted spherical TiO<sub>2</sub> NPs with diameters ranging from approximately 9 to 25 nm. Antimicrobial assessments indicated heightened efficacy in all nanocomposite samples compared to the pure PEO/CS composite, with a linear correlation to the quantity of TiO<sub>2</sub> nanoparticles present. These findings strongly suggest the potential of these nanocomposites for food packaging applications.</p></div>","PeriodicalId":737,"journal":{"name":"Polymer Bulletin","volume":"81 17","pages":"16157 - 16173"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing optical properties and antimicrobial efficacy of PEO/CS-doped TiO2 nanoparticles for food packaging applications\",\"authors\":\"Azzah M. Alghamdi, I. Guizani, E. M. Abdallah, M. O. Farea, M. A. Morsi, Ibrahim A. Alhagri, Talal F. Qahtan, Ahmed N. Al-Hakimi, Sadeq M. Al-Hazmy, S. El-Sayed Saeed, Abuzar E. A. E. Albadri\",\"doi\":\"10.1007/s00289-024-05472-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Utilizing the solution casting technique, polymer nanocomposites (PNCs) films including polyethylene oxide and chitosan (PEO/CS) doped with titanium dioxide nanoparticles (TiO<sub>2</sub> NPs) as nanoceramic were successfully synthesized. The study investigated how varying TiO<sub>2</sub> nanoparticle concentrations influenced the structural, optical properties, and antibacterial activity of the polymeric matrix. XRD patterns revealed an increase in the amorphous nature of the polymer blend as the content of TiO<sub>2</sub> NPs inside the PEO/CS blend grew. The FT-IR analysis confirmed the interaction between TiO<sub>2</sub> NPs and the PEO/CS blend. This confirmation is attributed to the observed vibrational changes upon the incorporation of TiO<sub>2</sub> dopant into the polymer matrix. The UV–visible spectrum aided in the determination of optical energy band gaps (both direct and indirect), showing reductions in both <i>E</i><sub>gd</sub> and <i>E</i><sub>gin</sub> with higher TiO<sub>2</sub> concentrations. SEM highlighted the partial compatibility between PEO/CS and TiO<sub>2</sub>, while transmission electron microscopy depicted spherical TiO<sub>2</sub> NPs with diameters ranging from approximately 9 to 25 nm. Antimicrobial assessments indicated heightened efficacy in all nanocomposite samples compared to the pure PEO/CS composite, with a linear correlation to the quantity of TiO<sub>2</sub> nanoparticles present. These findings strongly suggest the potential of these nanocomposites for food packaging applications.</p></div>\",\"PeriodicalId\":737,\"journal\":{\"name\":\"Polymer Bulletin\",\"volume\":\"81 17\",\"pages\":\"16157 - 16173\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Bulletin\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00289-024-05472-x\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Bulletin","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00289-024-05472-x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Enhancing optical properties and antimicrobial efficacy of PEO/CS-doped TiO2 nanoparticles for food packaging applications
Utilizing the solution casting technique, polymer nanocomposites (PNCs) films including polyethylene oxide and chitosan (PEO/CS) doped with titanium dioxide nanoparticles (TiO2 NPs) as nanoceramic were successfully synthesized. The study investigated how varying TiO2 nanoparticle concentrations influenced the structural, optical properties, and antibacterial activity of the polymeric matrix. XRD patterns revealed an increase in the amorphous nature of the polymer blend as the content of TiO2 NPs inside the PEO/CS blend grew. The FT-IR analysis confirmed the interaction between TiO2 NPs and the PEO/CS blend. This confirmation is attributed to the observed vibrational changes upon the incorporation of TiO2 dopant into the polymer matrix. The UV–visible spectrum aided in the determination of optical energy band gaps (both direct and indirect), showing reductions in both Egd and Egin with higher TiO2 concentrations. SEM highlighted the partial compatibility between PEO/CS and TiO2, while transmission electron microscopy depicted spherical TiO2 NPs with diameters ranging from approximately 9 to 25 nm. Antimicrobial assessments indicated heightened efficacy in all nanocomposite samples compared to the pure PEO/CS composite, with a linear correlation to the quantity of TiO2 nanoparticles present. These findings strongly suggest the potential of these nanocomposites for food packaging applications.
期刊介绍:
"Polymer Bulletin" is a comprehensive academic journal on polymer science founded in 1988. It was founded under the initiative of the late Mr. Wang Baoren, a famous Chinese chemist and educator. This journal is co-sponsored by the Chinese Chemical Society, the Institute of Chemistry, and the Chinese Academy of Sciences and is supervised by the China Association for Science and Technology. It is a core journal and is publicly distributed at home and abroad.
"Polymer Bulletin" is a monthly magazine with multiple columns, including a project application guide, outlook, review, research papers, highlight reviews, polymer education and teaching, information sharing, interviews, polymer science popularization, etc. The journal is included in the CSCD Chinese Science Citation Database. It serves as the source journal for Chinese scientific and technological paper statistics and the source journal of Peking University's "Overview of Chinese Core Journals."