{"title":"基于集中式特征金字塔的监督深度学习,从 GPR 数据中建立物体检测模型","authors":"Kun Yan, Xianlei Xu, Pengqiao Zhu, Zhaoyang Zhang","doi":"10.1111/1365-2478.13590","DOIUrl":null,"url":null,"abstract":"<p>To address low detection accuracy and speed due to the multisolvability of the ground-penetrating radar signal, we proposed a novel centralized feature pyramid-YOLOv6l–based model to enhance detection precision and speed in road damage and pipeline detection. The centralized feature pyramid was used to obtain rich intra-layer features and improve the network performance. Our proposed model achieves higher accuracy compared with the existing detection models. We also built two new evaluating indexes, relative average precision and relative mean average precision, to fully evaluate the detection accuracy. To verify the applicability of our model, we conducted a road field detection experiment on a ground-penetrating radar dataset we collected and found that the proposed model had good performance in increasing detection precision, achieving the highest mean average precision compared with YOLOv7, YOLOv5 and YOLOx models, with relative mean average precision and frame rate per second at 16.38% and 30.5%, respectively. The detection information for the road damage and pipeline were used to conduct three-dimensional imaging. Our model is suitable for object detection in ground-penetrating radar images, thereby providing technical support for road damage and underground pipeline detection.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Centralized feature pyramid-based supervised deep learning for object detection model from GPR data\",\"authors\":\"Kun Yan, Xianlei Xu, Pengqiao Zhu, Zhaoyang Zhang\",\"doi\":\"10.1111/1365-2478.13590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To address low detection accuracy and speed due to the multisolvability of the ground-penetrating radar signal, we proposed a novel centralized feature pyramid-YOLOv6l–based model to enhance detection precision and speed in road damage and pipeline detection. The centralized feature pyramid was used to obtain rich intra-layer features and improve the network performance. Our proposed model achieves higher accuracy compared with the existing detection models. We also built two new evaluating indexes, relative average precision and relative mean average precision, to fully evaluate the detection accuracy. To verify the applicability of our model, we conducted a road field detection experiment on a ground-penetrating radar dataset we collected and found that the proposed model had good performance in increasing detection precision, achieving the highest mean average precision compared with YOLOv7, YOLOv5 and YOLOx models, with relative mean average precision and frame rate per second at 16.38% and 30.5%, respectively. The detection information for the road damage and pipeline were used to conduct three-dimensional imaging. Our model is suitable for object detection in ground-penetrating radar images, thereby providing technical support for road damage and underground pipeline detection.</p>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13590\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13590","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Centralized feature pyramid-based supervised deep learning for object detection model from GPR data
To address low detection accuracy and speed due to the multisolvability of the ground-penetrating radar signal, we proposed a novel centralized feature pyramid-YOLOv6l–based model to enhance detection precision and speed in road damage and pipeline detection. The centralized feature pyramid was used to obtain rich intra-layer features and improve the network performance. Our proposed model achieves higher accuracy compared with the existing detection models. We also built two new evaluating indexes, relative average precision and relative mean average precision, to fully evaluate the detection accuracy. To verify the applicability of our model, we conducted a road field detection experiment on a ground-penetrating radar dataset we collected and found that the proposed model had good performance in increasing detection precision, achieving the highest mean average precision compared with YOLOv7, YOLOv5 and YOLOx models, with relative mean average precision and frame rate per second at 16.38% and 30.5%, respectively. The detection information for the road damage and pipeline were used to conduct three-dimensional imaging. Our model is suitable for object detection in ground-penetrating radar images, thereby providing technical support for road damage and underground pipeline detection.
期刊介绍:
Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.