反向时间迁移的高效照明补偿方法

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Yang Zhou
{"title":"反向时间迁移的高效照明补偿方法","authors":"Yang Zhou","doi":"10.1111/1365-2478.13581","DOIUrl":null,"url":null,"abstract":"<p>By directly solving the full two-way wave equation, reverse time migration has superiority over other imaging algorithms in handling steeply dipping structures and other complicated geological models. Moreover, by incorporating the asymptotic inversion operator into reverse time migration imaging condition, the imaging algorithm is able to give a quantitative estimation of parameter perturbation in high-frequency approximation sense. However, because conventional asymptotic inversion only accounts for geometrical spreading, uneven illumination due to irregular acquisition geometry and inhomogeneous subsurface at each image point is neglected. The omit of illumination compensation significantly affects the imaging quality. Wave-equation-based illumination compensation methods have been extensively studied in the past. However, the traditional wave-equation-based illumination compensation methods usually require high computational cost and huge storage. In this paper, we propose an efficient wave-equation-based illumination compensation method. Under high-frequency approximation, we first define a Jacobian determinant to measure the regularity of subsurface illumination, and then illumination compensation operators are proposed based on the Jacobian. Through boundary integration, we further express the illumination compensation operators through extrapolated wavefields; the explicit computation of asymptotic Green's functions is thus avoided, and an efficient illumination compensation implementation for reverse time migration is achieved. Numerical results with both synthetic and field data validate the effectiveness and efficiency of the presented method.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient illumination compensation method for reverse time migration\",\"authors\":\"Yang Zhou\",\"doi\":\"10.1111/1365-2478.13581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By directly solving the full two-way wave equation, reverse time migration has superiority over other imaging algorithms in handling steeply dipping structures and other complicated geological models. Moreover, by incorporating the asymptotic inversion operator into reverse time migration imaging condition, the imaging algorithm is able to give a quantitative estimation of parameter perturbation in high-frequency approximation sense. However, because conventional asymptotic inversion only accounts for geometrical spreading, uneven illumination due to irregular acquisition geometry and inhomogeneous subsurface at each image point is neglected. The omit of illumination compensation significantly affects the imaging quality. Wave-equation-based illumination compensation methods have been extensively studied in the past. However, the traditional wave-equation-based illumination compensation methods usually require high computational cost and huge storage. In this paper, we propose an efficient wave-equation-based illumination compensation method. Under high-frequency approximation, we first define a Jacobian determinant to measure the regularity of subsurface illumination, and then illumination compensation operators are proposed based on the Jacobian. Through boundary integration, we further express the illumination compensation operators through extrapolated wavefields; the explicit computation of asymptotic Green's functions is thus avoided, and an efficient illumination compensation implementation for reverse time migration is achieved. Numerical results with both synthetic and field data validate the effectiveness and efficiency of the presented method.</p>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13581\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13581","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

通过直接求解完整的双向波方程,反向时间迁移在处理陡倾构造和其他复杂地质模型方面比其他成像算法更具优势。此外,通过在反向时间迁移成像条件中加入渐近反演算子,该成像算法能够定量估计高频近似意义上的参数扰动。然而,由于传统的渐近反演只考虑了几何展宽,因此忽略了不规则采集几何图形和每个图像点的非均质次表层造成的不均匀光照。忽略光照补偿会严重影响成像质量。基于波方程的光照补偿方法在过去得到了广泛的研究。然而,传统的基于波方程的光照补偿方法通常需要高昂的计算成本和巨大的存储空间。本文提出了一种高效的基于波方程的光照补偿方法。在高频近似下,我们首先定义了一个雅各布行列式来衡量次表层光照的规则性,然后基于雅各布行列式提出了光照补偿算子。通过边界积分,我们进一步通过外推波场来表达光照补偿算子;从而避免了渐近格林函数的显式计算,实现了反向时间迁移的高效光照补偿。合成数据和实地数据的数值结果验证了所提出方法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient illumination compensation method for reverse time migration

By directly solving the full two-way wave equation, reverse time migration has superiority over other imaging algorithms in handling steeply dipping structures and other complicated geological models. Moreover, by incorporating the asymptotic inversion operator into reverse time migration imaging condition, the imaging algorithm is able to give a quantitative estimation of parameter perturbation in high-frequency approximation sense. However, because conventional asymptotic inversion only accounts for geometrical spreading, uneven illumination due to irregular acquisition geometry and inhomogeneous subsurface at each image point is neglected. The omit of illumination compensation significantly affects the imaging quality. Wave-equation-based illumination compensation methods have been extensively studied in the past. However, the traditional wave-equation-based illumination compensation methods usually require high computational cost and huge storage. In this paper, we propose an efficient wave-equation-based illumination compensation method. Under high-frequency approximation, we first define a Jacobian determinant to measure the regularity of subsurface illumination, and then illumination compensation operators are proposed based on the Jacobian. Through boundary integration, we further express the illumination compensation operators through extrapolated wavefields; the explicit computation of asymptotic Green's functions is thus avoided, and an efficient illumination compensation implementation for reverse time migration is achieved. Numerical results with both synthetic and field data validate the effectiveness and efficiency of the presented method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信