{"title":"反式阿魏酸负载聚合物纳米制剂简评:药理应用与未来展望","authors":"Usha Rani, Asha Rani, Rajesh Thakur","doi":"10.1007/s00289-024-05488-3","DOIUrl":null,"url":null,"abstract":"<div><p>Plants are mainly considered as the important source of energy and from ancient times plants, and the plants products are used in various form. These pharmacologically bioactive compounds have limited use due to their insolubility in water, and to overcome this, these compounds were encapsulated in biodegradable polymers and gums which enable them to be used practically for therapeutic purposes. In this review article we briefly discussed about the trans-ferulic acid-loaded polymeric nanoformulations which can be used for preclinical and clinical purpose. Trans-ferulic acid-loaded polymeric nanoformulations were synthesized using ionic gelation method. The polymeric nanoformulations have diameter mainly in nanometers which is mainly due to their high surface area to volume ratio. Their unique physical and chemical properties make them attractive for a variety of applications, such as drug administration, cosmetics, and environmental remediation. Plant science is becoming more and more interested in the topic of nanotechnology, particularly with regard to the use of nanomaterials as vehicles for agrochemicals or biomolecules and their enormous potential in different fields. It has been shown in recent years that significant advancements in nanotechnology have been made in the synthesis of nanoparticles and their use in diagnosis and treatment in medicine. More research is deemed necessary in this direction to optimize the synthesis and biofunctionalization of nanoparticles for different applications, as well as to better understand the mechanisms and enhance sustainability for human health. Lastly, we have examined a few cutting-edge and novel ferulic acid nanoformulations and we assume that this review article will provide researchers a chance to close the gaps in preclinical and clinical research.</p></div>","PeriodicalId":737,"journal":{"name":"Polymer Bulletin","volume":"81 18","pages":"16329 - 16354"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brief review of trans-ferulic acid-loaded polymeric nanoformulations: pharmacological applications and future perspectives\",\"authors\":\"Usha Rani, Asha Rani, Rajesh Thakur\",\"doi\":\"10.1007/s00289-024-05488-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plants are mainly considered as the important source of energy and from ancient times plants, and the plants products are used in various form. These pharmacologically bioactive compounds have limited use due to their insolubility in water, and to overcome this, these compounds were encapsulated in biodegradable polymers and gums which enable them to be used practically for therapeutic purposes. In this review article we briefly discussed about the trans-ferulic acid-loaded polymeric nanoformulations which can be used for preclinical and clinical purpose. Trans-ferulic acid-loaded polymeric nanoformulations were synthesized using ionic gelation method. The polymeric nanoformulations have diameter mainly in nanometers which is mainly due to their high surface area to volume ratio. Their unique physical and chemical properties make them attractive for a variety of applications, such as drug administration, cosmetics, and environmental remediation. Plant science is becoming more and more interested in the topic of nanotechnology, particularly with regard to the use of nanomaterials as vehicles for agrochemicals or biomolecules and their enormous potential in different fields. It has been shown in recent years that significant advancements in nanotechnology have been made in the synthesis of nanoparticles and their use in diagnosis and treatment in medicine. More research is deemed necessary in this direction to optimize the synthesis and biofunctionalization of nanoparticles for different applications, as well as to better understand the mechanisms and enhance sustainability for human health. Lastly, we have examined a few cutting-edge and novel ferulic acid nanoformulations and we assume that this review article will provide researchers a chance to close the gaps in preclinical and clinical research.</p></div>\",\"PeriodicalId\":737,\"journal\":{\"name\":\"Polymer Bulletin\",\"volume\":\"81 18\",\"pages\":\"16329 - 16354\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Bulletin\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00289-024-05488-3\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Bulletin","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00289-024-05488-3","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Brief review of trans-ferulic acid-loaded polymeric nanoformulations: pharmacological applications and future perspectives
Plants are mainly considered as the important source of energy and from ancient times plants, and the plants products are used in various form. These pharmacologically bioactive compounds have limited use due to their insolubility in water, and to overcome this, these compounds were encapsulated in biodegradable polymers and gums which enable them to be used practically for therapeutic purposes. In this review article we briefly discussed about the trans-ferulic acid-loaded polymeric nanoformulations which can be used for preclinical and clinical purpose. Trans-ferulic acid-loaded polymeric nanoformulations were synthesized using ionic gelation method. The polymeric nanoformulations have diameter mainly in nanometers which is mainly due to their high surface area to volume ratio. Their unique physical and chemical properties make them attractive for a variety of applications, such as drug administration, cosmetics, and environmental remediation. Plant science is becoming more and more interested in the topic of nanotechnology, particularly with regard to the use of nanomaterials as vehicles for agrochemicals or biomolecules and their enormous potential in different fields. It has been shown in recent years that significant advancements in nanotechnology have been made in the synthesis of nanoparticles and their use in diagnosis and treatment in medicine. More research is deemed necessary in this direction to optimize the synthesis and biofunctionalization of nanoparticles for different applications, as well as to better understand the mechanisms and enhance sustainability for human health. Lastly, we have examined a few cutting-edge and novel ferulic acid nanoformulations and we assume that this review article will provide researchers a chance to close the gaps in preclinical and clinical research.
期刊介绍:
"Polymer Bulletin" is a comprehensive academic journal on polymer science founded in 1988. It was founded under the initiative of the late Mr. Wang Baoren, a famous Chinese chemist and educator. This journal is co-sponsored by the Chinese Chemical Society, the Institute of Chemistry, and the Chinese Academy of Sciences and is supervised by the China Association for Science and Technology. It is a core journal and is publicly distributed at home and abroad.
"Polymer Bulletin" is a monthly magazine with multiple columns, including a project application guide, outlook, review, research papers, highlight reviews, polymer education and teaching, information sharing, interviews, polymer science popularization, etc. The journal is included in the CSCD Chinese Science Citation Database. It serves as the source journal for Chinese scientific and technological paper statistics and the source journal of Peking University's "Overview of Chinese Core Journals."