Touch2Touch:用于物体操作的跨模式触觉生成

Samanta Rodriguez, Yiming Dou, Miquel Oller, Andrew Owens, Nima Fazeli
{"title":"Touch2Touch:用于物体操作的跨模式触觉生成","authors":"Samanta Rodriguez, Yiming Dou, Miquel Oller, Andrew Owens, Nima Fazeli","doi":"arxiv-2409.08269","DOIUrl":null,"url":null,"abstract":"Today's touch sensors come in many shapes and sizes. This has made it\nchallenging to develop general-purpose touch processing methods since models\nare generally tied to one specific sensor design. We address this problem by\nperforming cross-modal prediction between touch sensors: given the tactile\nsignal from one sensor, we use a generative model to estimate how the same\nphysical contact would be perceived by another sensor. This allows us to apply\nsensor-specific methods to the generated signal. We implement this idea by\ntraining a diffusion model to translate between the popular GelSlim and Soft\nBubble sensors. As a downstream task, we perform in-hand object pose estimation\nusing GelSlim sensors while using an algorithm that operates only on Soft\nBubble signals. The dataset, the code, and additional details can be found at\nhttps://www.mmintlab.com/research/touch2touch/.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Touch2Touch: Cross-Modal Tactile Generation for Object Manipulation\",\"authors\":\"Samanta Rodriguez, Yiming Dou, Miquel Oller, Andrew Owens, Nima Fazeli\",\"doi\":\"arxiv-2409.08269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today's touch sensors come in many shapes and sizes. This has made it\\nchallenging to develop general-purpose touch processing methods since models\\nare generally tied to one specific sensor design. We address this problem by\\nperforming cross-modal prediction between touch sensors: given the tactile\\nsignal from one sensor, we use a generative model to estimate how the same\\nphysical contact would be perceived by another sensor. This allows us to apply\\nsensor-specific methods to the generated signal. We implement this idea by\\ntraining a diffusion model to translate between the popular GelSlim and Soft\\nBubble sensors. As a downstream task, we perform in-hand object pose estimation\\nusing GelSlim sensors while using an algorithm that operates only on Soft\\nBubble signals. The dataset, the code, and additional details can be found at\\nhttps://www.mmintlab.com/research/touch2touch/.\",\"PeriodicalId\":501031,\"journal\":{\"name\":\"arXiv - CS - Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当今的触摸传感器有多种形状和尺寸。这给开发通用触摸处理方法带来了挑战,因为模型一般都与一种特定的传感器设计有关。我们通过在触摸传感器之间进行跨模态预测来解决这个问题:给定一个传感器的触觉信号,我们使用生成模型来估计另一个传感器将如何感知相同的物理接触。这样,我们就能对生成的信号应用特定于传感器的方法。我们通过训练扩散模型来实现这一想法,从而在流行的 GelSlim 和 SoftBubble 传感器之间进行转换。作为下游任务,我们使用 GelSlim 传感器执行手持物体姿态估计,同时使用一种仅在 SoftBubble 信号上运行的算法。有关数据集、代码和其他详细信息,请访问https://www.mmintlab.com/research/touch2touch/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Touch2Touch: Cross-Modal Tactile Generation for Object Manipulation
Today's touch sensors come in many shapes and sizes. This has made it challenging to develop general-purpose touch processing methods since models are generally tied to one specific sensor design. We address this problem by performing cross-modal prediction between touch sensors: given the tactile signal from one sensor, we use a generative model to estimate how the same physical contact would be perceived by another sensor. This allows us to apply sensor-specific methods to the generated signal. We implement this idea by training a diffusion model to translate between the popular GelSlim and Soft Bubble sensors. As a downstream task, we perform in-hand object pose estimation using GelSlim sensors while using an algorithm that operates only on Soft Bubble signals. The dataset, the code, and additional details can be found at https://www.mmintlab.com/research/touch2touch/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信