{"title":"用于神经形态设备应用的铁弹性孪生壁","authors":"Guangming Lu, Ekhard K. H. Salje","doi":"10.3389/fmats.2024.1406853","DOIUrl":null,"url":null,"abstract":"The possibility to use ferroelastic materials as components of neuromorphic devices is discussed. They can be used as local memristors with the advantage that ionic transport is constraint to twin boundaries where ionic diffusion is much faster than in the bulk and does not leak into adjacent domains. It is shown that nano-scale ferroelastic memristors can contain a multitude of domain walls. These domain walls interact by strain fields where the interactions near surfaces are fundamentally different from bulk materials. We show that surface relaxations (∼image forces) are curtailed to short range dipolar interactions which decay as 1/d<jats:sup>2</jats:sup> where d is the distance between domain walls. In bigger samples such interactions are long ranging with 1/d. The cross-over regime is typically in the range of some 200–1500 nm using a simple spring interaction model.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":"24 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferroelastic twin walls for neuromorphic device applications\",\"authors\":\"Guangming Lu, Ekhard K. H. Salje\",\"doi\":\"10.3389/fmats.2024.1406853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The possibility to use ferroelastic materials as components of neuromorphic devices is discussed. They can be used as local memristors with the advantage that ionic transport is constraint to twin boundaries where ionic diffusion is much faster than in the bulk and does not leak into adjacent domains. It is shown that nano-scale ferroelastic memristors can contain a multitude of domain walls. These domain walls interact by strain fields where the interactions near surfaces are fundamentally different from bulk materials. We show that surface relaxations (∼image forces) are curtailed to short range dipolar interactions which decay as 1/d<jats:sup>2</jats:sup> where d is the distance between domain walls. In bigger samples such interactions are long ranging with 1/d. The cross-over regime is typically in the range of some 200–1500 nm using a simple spring interaction model.\",\"PeriodicalId\":12524,\"journal\":{\"name\":\"Frontiers in Materials\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3389/fmats.2024.1406853\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3389/fmats.2024.1406853","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文讨论了将铁弹性材料用作神经形态设备元件的可能性。铁弹性材料可用作局部忆阻器,其优势在于离子传输受限于孪生边界,离子扩散速度远快于体态,且不会泄漏到相邻畴中。研究表明,纳米级铁弹性忆阻器可以包含大量畴壁。这些畴壁通过应变场相互作用,其中表面附近的相互作用与块体材料有本质区别。我们的研究表明,表面弛豫(∼图像力)被限制为短程偶极相互作用,其衰减为 1/d2,其中 d 是域壁之间的距离。在较大的样品中,这种相互作用是长程的,衰减为 1/d。使用简单的弹簧相互作用模型,交叉机制通常在大约 200-1500 nm 的范围内。
Ferroelastic twin walls for neuromorphic device applications
The possibility to use ferroelastic materials as components of neuromorphic devices is discussed. They can be used as local memristors with the advantage that ionic transport is constraint to twin boundaries where ionic diffusion is much faster than in the bulk and does not leak into adjacent domains. It is shown that nano-scale ferroelastic memristors can contain a multitude of domain walls. These domain walls interact by strain fields where the interactions near surfaces are fundamentally different from bulk materials. We show that surface relaxations (∼image forces) are curtailed to short range dipolar interactions which decay as 1/d2 where d is the distance between domain walls. In bigger samples such interactions are long ranging with 1/d. The cross-over regime is typically in the range of some 200–1500 nm using a simple spring interaction model.
期刊介绍:
Frontiers in Materials is a high visibility journal publishing rigorously peer-reviewed research across the entire breadth of materials science and engineering. This interdisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers across academia and industry, and the public worldwide.
Founded upon a research community driven approach, this Journal provides a balanced and comprehensive offering of Specialty Sections, each of which has a dedicated Editorial Board of leading experts in the respective field.