世界各地美食中的配料组合网络

Claudio Caprioli, Saumitra Kulkarni, Federico Battiston, Iacopo Iacopini, Andrea Santoro, Vito Latora
{"title":"世界各地美食中的配料组合网络","authors":"Claudio Caprioli, Saumitra Kulkarni, Federico Battiston, Iacopo Iacopini, Andrea Santoro, Vito Latora","doi":"arxiv-2408.15162","DOIUrl":null,"url":null,"abstract":"Investigating how different ingredients are combined in popular dishes is\ncrucial to reveal the fundamental principles behind the formation of food\npreferences. Here, we use data from food repositories and network analysis to\ncharacterize worldwide cuisines. In our framework, each cuisine is represented\nas a network, where nodes correspond to ingredient types and weighted links\ndescribe how frequently pairs of ingredient types appear together in recipes.\nThe networks of ingredient combinations reveal cuisine-specific patterns,\nhighlighting similarities and differences in gastronomic preferences across\ndifferent world regions. We find that popular ingredients, recurrent\ncombinations, and the way they are organized within the backbone of the network\nprovide a unique fingerprint for each cuisine. Hence, we demonstrate that\nnetworks of ingredient combinations are able to cluster global cuisines into\nmeaningful geo-cultural groups, and can also be used to train models to\nuniquely identify a cuisine from a subset of its recipes. Our study advances\nour understanding of food combinations and helps uncover the geography of\ntaste, paving the way for the creation of new and innovative recipes.","PeriodicalId":501043,"journal":{"name":"arXiv - PHYS - Physics and Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The networks of ingredient combination in cuisines around the world\",\"authors\":\"Claudio Caprioli, Saumitra Kulkarni, Federico Battiston, Iacopo Iacopini, Andrea Santoro, Vito Latora\",\"doi\":\"arxiv-2408.15162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investigating how different ingredients are combined in popular dishes is\\ncrucial to reveal the fundamental principles behind the formation of food\\npreferences. Here, we use data from food repositories and network analysis to\\ncharacterize worldwide cuisines. In our framework, each cuisine is represented\\nas a network, where nodes correspond to ingredient types and weighted links\\ndescribe how frequently pairs of ingredient types appear together in recipes.\\nThe networks of ingredient combinations reveal cuisine-specific patterns,\\nhighlighting similarities and differences in gastronomic preferences across\\ndifferent world regions. We find that popular ingredients, recurrent\\ncombinations, and the way they are organized within the backbone of the network\\nprovide a unique fingerprint for each cuisine. Hence, we demonstrate that\\nnetworks of ingredient combinations are able to cluster global cuisines into\\nmeaningful geo-cultural groups, and can also be used to train models to\\nuniquely identify a cuisine from a subset of its recipes. Our study advances\\nour understanding of food combinations and helps uncover the geography of\\ntaste, paving the way for the creation of new and innovative recipes.\",\"PeriodicalId\":501043,\"journal\":{\"name\":\"arXiv - PHYS - Physics and Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Physics and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Physics and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究流行菜肴中不同配料的组合方式对于揭示食物偏好形成背后的基本原理至关重要。在这里,我们利用食物资料库的数据和网络分析来描述全球美食的特征。在我们的框架中,每种菜系都被表示为一个网络,其中的节点对应于配料类型,加权链接描述了配料类型在食谱中出现的频率。配料组合网络揭示了菜系的特定模式,突出了世界不同地区美食偏好的异同。我们发现,流行配料、重复出现的组合以及它们在网络骨干中的组织方式为每种菜肴提供了独特的指纹。因此,我们证明了配料组合网络能够将全球美食聚类为有意义的地理文化群体,也可以用来训练模型,从菜谱子集中独特地识别美食。我们的研究加深了人们对食物组合的理解,有助于揭示味觉地理学,为创造新颖的食谱铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The networks of ingredient combination in cuisines around the world
Investigating how different ingredients are combined in popular dishes is crucial to reveal the fundamental principles behind the formation of food preferences. Here, we use data from food repositories and network analysis to characterize worldwide cuisines. In our framework, each cuisine is represented as a network, where nodes correspond to ingredient types and weighted links describe how frequently pairs of ingredient types appear together in recipes. The networks of ingredient combinations reveal cuisine-specific patterns, highlighting similarities and differences in gastronomic preferences across different world regions. We find that popular ingredients, recurrent combinations, and the way they are organized within the backbone of the network provide a unique fingerprint for each cuisine. Hence, we demonstrate that networks of ingredient combinations are able to cluster global cuisines into meaningful geo-cultural groups, and can also be used to train models to uniquely identify a cuisine from a subset of its recipes. Our study advances our understanding of food combinations and helps uncover the geography of taste, paving the way for the creation of new and innovative recipes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信