通过数据科学推动清洁能源转型

A. Fronzetti Colladon, A. L. Pisello, L. F. Cabeza
{"title":"通过数据科学推动清洁能源转型","authors":"A. Fronzetti Colladon, A. L. Pisello, L. F. Cabeza","doi":"arxiv-2408.15211","DOIUrl":null,"url":null,"abstract":"The demand for research supporting the development of new policy frameworks\nfor energy saving and conservation has never been more critical. As climate\nchange accelerates and its impacts become increasingly severe, the need for\nsustainable and resilient socioeconomic systems is increasingly pressing. In\nresponse to this global challenge, the ten articles of this special issue seek\nto explore how advances in Artificial Intelligence and Data Science can drive\nthe energy transition and enhance environmental sustainability.","PeriodicalId":501043,"journal":{"name":"arXiv - PHYS - Physics and Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting the clean energy transition through data science\",\"authors\":\"A. Fronzetti Colladon, A. L. Pisello, L. F. Cabeza\",\"doi\":\"arxiv-2408.15211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand for research supporting the development of new policy frameworks\\nfor energy saving and conservation has never been more critical. As climate\\nchange accelerates and its impacts become increasingly severe, the need for\\nsustainable and resilient socioeconomic systems is increasingly pressing. In\\nresponse to this global challenge, the ten articles of this special issue seek\\nto explore how advances in Artificial Intelligence and Data Science can drive\\nthe energy transition and enhance environmental sustainability.\",\"PeriodicalId\":501043,\"journal\":{\"name\":\"arXiv - PHYS - Physics and Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Physics and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Physics and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现在比以往任何时候都更需要开展研究,支持制定新的节能政策框架。随着气候变化的加速及其影响的日益严重,对可持续和有弹性的社会经济系统的需求日益迫切。为了应对这一全球性挑战,本特刊的十篇文章试图探讨人工智能和数据科学的进步如何推动能源转型并提高环境的可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boosting the clean energy transition through data science
The demand for research supporting the development of new policy frameworks for energy saving and conservation has never been more critical. As climate change accelerates and its impacts become increasingly severe, the need for sustainable and resilient socioeconomic systems is increasingly pressing. In response to this global challenge, the ten articles of this special issue seek to explore how advances in Artificial Intelligence and Data Science can drive the energy transition and enhance environmental sustainability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信