大型非增长型网络度分布的新特性

Jonathan Franceschi, Lorenzo Pareschi, Mattia Zanella
{"title":"大型非增长型网络度分布的新特性","authors":"Jonathan Franceschi, Lorenzo Pareschi, Mattia Zanella","doi":"arxiv-2409.06099","DOIUrl":null,"url":null,"abstract":"The degree distribution is a key statistical indicator in network theory,\noften used to understand how information spreads across connected nodes. In\nthis paper, we focus on non-growing networks formed through a rewiring\nalgorithm and develop kinetic Boltzmann-type models to capture the emergence of\ndegree distributions that characterize both preferential attachment networks\nand random networks. Under a suitable mean-field scaling, these models reduce\nto a Fokker-Planck-type partial differential equation with an affine diffusion\ncoefficient, that is consistent with a well-established master equation for\ndiscrete rewiring processes. We further analyze the convergence to equilibrium\nfor this class of Fokker-Planck equations, demonstrating how different regimes\n-- ranging from exponential to algebraic rates -- depend on network parameters.\nOur results provide a unified framework for modeling degree distributions in\nnon-growing networks and offer insights into the long-time behavior of such\nsystems.","PeriodicalId":501043,"journal":{"name":"arXiv - PHYS - Physics and Society","volume":"129 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging properties of the degree distribution in large non-growing networks\",\"authors\":\"Jonathan Franceschi, Lorenzo Pareschi, Mattia Zanella\",\"doi\":\"arxiv-2409.06099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The degree distribution is a key statistical indicator in network theory,\\noften used to understand how information spreads across connected nodes. In\\nthis paper, we focus on non-growing networks formed through a rewiring\\nalgorithm and develop kinetic Boltzmann-type models to capture the emergence of\\ndegree distributions that characterize both preferential attachment networks\\nand random networks. Under a suitable mean-field scaling, these models reduce\\nto a Fokker-Planck-type partial differential equation with an affine diffusion\\ncoefficient, that is consistent with a well-established master equation for\\ndiscrete rewiring processes. We further analyze the convergence to equilibrium\\nfor this class of Fokker-Planck equations, demonstrating how different regimes\\n-- ranging from exponential to algebraic rates -- depend on network parameters.\\nOur results provide a unified framework for modeling degree distributions in\\nnon-growing networks and offer insights into the long-time behavior of such\\nsystems.\",\"PeriodicalId\":501043,\"journal\":{\"name\":\"arXiv - PHYS - Physics and Society\",\"volume\":\"129 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Physics and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Physics and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

度分布是网络理论中的一个关键统计指标,通常用于理解信息如何在连接节点间传播。在本文中,我们重点研究了通过重新布线算法形成的非增长网络,并建立了动力学玻尔兹曼型模型,以捕捉作为优先连接网络和随机网络特征的度分布的出现。在合适的均场缩放条件下,这些模型简化为具有仿射扩散系数的福克-普朗克偏微分方程,这与离散重布线过程的成熟主方程是一致的。我们进一步分析了这一类福克-普朗克方程向平衡的收敛,证明了从指数速率到代数速率的不同状态是如何依赖于网络参数的。我们的结果为非增长网络中的学位分布建模提供了一个统一的框架,并为此类系统的长期行为提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emerging properties of the degree distribution in large non-growing networks
The degree distribution is a key statistical indicator in network theory, often used to understand how information spreads across connected nodes. In this paper, we focus on non-growing networks formed through a rewiring algorithm and develop kinetic Boltzmann-type models to capture the emergence of degree distributions that characterize both preferential attachment networks and random networks. Under a suitable mean-field scaling, these models reduce to a Fokker-Planck-type partial differential equation with an affine diffusion coefficient, that is consistent with a well-established master equation for discrete rewiring processes. We further analyze the convergence to equilibrium for this class of Fokker-Planck equations, demonstrating how different regimes -- ranging from exponential to algebraic rates -- depend on network parameters. Our results provide a unified framework for modeling degree distributions in non-growing networks and offer insights into the long-time behavior of such systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信