类量子方法揭示分区模型可预测性的内在极限

José Alejandro Rojas-Venegas, Pablo Gallarta-Sáenz, Rafael G. Hurtado, Jesús Gómez-Gardeñes, David Soriano-Paños
{"title":"类量子方法揭示分区模型可预测性的内在极限","authors":"José Alejandro Rojas-Venegas, Pablo Gallarta-Sáenz, Rafael G. Hurtado, Jesús Gómez-Gardeñes, David Soriano-Paños","doi":"arxiv-2409.06438","DOIUrl":null,"url":null,"abstract":"Obtaining accurate forecasts for the evolution of epidemic outbreaks from\ndeterministic compartmental models represents a major theoretical challenge.\nRecently, it has been shown that these models typically exhibit trajectories'\ndegeneracy, as different sets of epidemiological parameters yield comparable\npredictions at early stages of the outbreak but disparate future epidemic\nscenarios. Here we use the Doi-Peliti approach and extend the classical\ndeterministic SIS and SIR models to a quantum-like formalism to explore whether\nthe uncertainty of epidemic forecasts is also shaped by the stochastic nature\nof epidemic processes. This approach allows getting a probabilistic ensemble of\ntrajectories, revealing that epidemic uncertainty is not uniform across time,\nbeing maximal around the epidemic peak and vanishing at both early and very\nlate stages of the outbreak. Our results therefore show that, independently of\nthe models' complexity, the stochasticity of contagion and recover processes\nposes a natural constraint for the uncertainty of epidemic forecasts.","PeriodicalId":501043,"journal":{"name":"arXiv - PHYS - Physics and Society","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum-like approaches unveil the intrinsic limits of predictability in compartmental models\",\"authors\":\"José Alejandro Rojas-Venegas, Pablo Gallarta-Sáenz, Rafael G. Hurtado, Jesús Gómez-Gardeñes, David Soriano-Paños\",\"doi\":\"arxiv-2409.06438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obtaining accurate forecasts for the evolution of epidemic outbreaks from\\ndeterministic compartmental models represents a major theoretical challenge.\\nRecently, it has been shown that these models typically exhibit trajectories'\\ndegeneracy, as different sets of epidemiological parameters yield comparable\\npredictions at early stages of the outbreak but disparate future epidemic\\nscenarios. Here we use the Doi-Peliti approach and extend the classical\\ndeterministic SIS and SIR models to a quantum-like formalism to explore whether\\nthe uncertainty of epidemic forecasts is also shaped by the stochastic nature\\nof epidemic processes. This approach allows getting a probabilistic ensemble of\\ntrajectories, revealing that epidemic uncertainty is not uniform across time,\\nbeing maximal around the epidemic peak and vanishing at both early and very\\nlate stages of the outbreak. Our results therefore show that, independently of\\nthe models' complexity, the stochasticity of contagion and recover processes\\nposes a natural constraint for the uncertainty of epidemic forecasts.\",\"PeriodicalId\":501043,\"journal\":{\"name\":\"arXiv - PHYS - Physics and Society\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Physics and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Physics and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究表明,这些模型通常表现出轨迹退化(trajectories'degeneracy),因为不同的流行病学参数集在流行病爆发的早期阶段会产生相似的预测结果,但未来的流行病情况却各不相同。在此,我们采用 Doi-Peliti 方法,将经典的确定性 SIS 和 SIR 模型扩展到类似量子的形式,以探讨流行病预测的不确定性是否也受流行病过程随机性质的影响。通过这种方法,我们可以得到一组概率轨迹,揭示出疫情的不确定性在不同时间段并不一致,在疫情高峰期前后最大,而在疫情爆发的早期和晚期阶段都会消失。因此,我们的研究结果表明,与模型的复杂性无关,传染和恢复过程的随机性对流行病预测的不确定性构成了天然的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum-like approaches unveil the intrinsic limits of predictability in compartmental models
Obtaining accurate forecasts for the evolution of epidemic outbreaks from deterministic compartmental models represents a major theoretical challenge. Recently, it has been shown that these models typically exhibit trajectories' degeneracy, as different sets of epidemiological parameters yield comparable predictions at early stages of the outbreak but disparate future epidemic scenarios. Here we use the Doi-Peliti approach and extend the classical deterministic SIS and SIR models to a quantum-like formalism to explore whether the uncertainty of epidemic forecasts is also shaped by the stochastic nature of epidemic processes. This approach allows getting a probabilistic ensemble of trajectories, revealing that epidemic uncertainty is not uniform across time, being maximal around the epidemic peak and vanishing at both early and very late stages of the outbreak. Our results therefore show that, independently of the models' complexity, the stochasticity of contagion and recover processes poses a natural constraint for the uncertainty of epidemic forecasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信