{"title":"基于形状统计特征的 XGBoost 分类器检测水中的典型瞬态信号:在南露脊鲸叫声中的应用","authors":"Zemin Zhou, Yanrui Qu, Boqing Zhu, Bingbing Zhang","doi":"10.3390/jmse12091596","DOIUrl":null,"url":null,"abstract":"Whale sound is a typical transient signal. The escalating demands of ecological research and marine conservation necessitate advanced technologies for the automatic detection and classification of underwater acoustic signals. Traditional energy detection methods, which focus primarily on amplitude, often perform poorly in the non-Gaussian noise conditions typical of oceanic environments. This study introduces a classified-before-detect approach that overcomes the limitations of amplitude-focused techniques. We also address the challenges posed by deep learning models, such as high data labeling costs and extensive computational requirements. By extracting shape statistical features from audio and using the XGBoost classifier, our method not only outperforms the traditional convolutional neural network (CNN) method in accuracy but also reduces the dependence on labeled data, thus improving the detection efficiency. The integration of these features significantly enhances model performance, promoting the broader application of marine acoustic remote sensing technologies. This research contributes to the advancement of marine bioacoustic monitoring, offering a reliable, rapid, and training-efficient method suitable for practical deployment.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"10 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Typical Transient Signals in Water by XGBoost Classifier Based on Shape Statistical Features: Application to the Call of Southern Right Whale\",\"authors\":\"Zemin Zhou, Yanrui Qu, Boqing Zhu, Bingbing Zhang\",\"doi\":\"10.3390/jmse12091596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Whale sound is a typical transient signal. The escalating demands of ecological research and marine conservation necessitate advanced technologies for the automatic detection and classification of underwater acoustic signals. Traditional energy detection methods, which focus primarily on amplitude, often perform poorly in the non-Gaussian noise conditions typical of oceanic environments. This study introduces a classified-before-detect approach that overcomes the limitations of amplitude-focused techniques. We also address the challenges posed by deep learning models, such as high data labeling costs and extensive computational requirements. By extracting shape statistical features from audio and using the XGBoost classifier, our method not only outperforms the traditional convolutional neural network (CNN) method in accuracy but also reduces the dependence on labeled data, thus improving the detection efficiency. The integration of these features significantly enhances model performance, promoting the broader application of marine acoustic remote sensing technologies. This research contributes to the advancement of marine bioacoustic monitoring, offering a reliable, rapid, and training-efficient method suitable for practical deployment.\",\"PeriodicalId\":16168,\"journal\":{\"name\":\"Journal of Marine Science and Engineering\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/jmse12091596\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091596","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Detection of Typical Transient Signals in Water by XGBoost Classifier Based on Shape Statistical Features: Application to the Call of Southern Right Whale
Whale sound is a typical transient signal. The escalating demands of ecological research and marine conservation necessitate advanced technologies for the automatic detection and classification of underwater acoustic signals. Traditional energy detection methods, which focus primarily on amplitude, often perform poorly in the non-Gaussian noise conditions typical of oceanic environments. This study introduces a classified-before-detect approach that overcomes the limitations of amplitude-focused techniques. We also address the challenges posed by deep learning models, such as high data labeling costs and extensive computational requirements. By extracting shape statistical features from audio and using the XGBoost classifier, our method not only outperforms the traditional convolutional neural network (CNN) method in accuracy but also reduces the dependence on labeled data, thus improving the detection efficiency. The integration of these features significantly enhances model performance, promoting the broader application of marine acoustic remote sensing technologies. This research contributes to the advancement of marine bioacoustic monitoring, offering a reliable, rapid, and training-efficient method suitable for practical deployment.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.