{"title":"基于全向扫描声纳的海笼中卵棘鱼分布估算方法","authors":"Yu Hu, Jiazhen Hu, Pengqi Sun, Guohao Zhu, Jialong Sun, Qiyou Tao, Taiping Yuan, Gen Li, Guoliang Pang, Xiaohua Huang","doi":"10.3390/jmse12091571","DOIUrl":null,"url":null,"abstract":"In order to accurately estimate the distribution of Trachinotus ovatus in marine cages, a novel method was developed using omnidirectional scanning sonar and deep-learning techniques. This method involved differentiating water layers and clustering data layer by layer to achieve precise location estimation. The approach comprised two main components: fish identification and fish clustering. Firstly, omnidirectional scanning sonar was employed to perform spiral detection within marine cages, capturing fish image data. These images were then labeled to construct a training dataset for an enhanced CS-YOLOv8s model. After training, the CS-YOLOv8s model was used to identify and locate fish within the images. Secondly, the cages were divided into water layers with depth intervals of 40 cm. The identification coordinate data for each water layer were clustered using the DBSCAN method to generate location coordinates for the fish in each layer. Finally, the coordinate data from all water layers were consolidated to determine the overall distribution of fish within the cage. This method was shown, through multiple experimental results, to effectively estimate the distribution of Trachinotus ovatus in marine cages, closely matching the distributions detected manually.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method for Estimating the Distribution of Trachinotus ovatus in Marine Cages Based on Omnidirectional Scanning Sonar\",\"authors\":\"Yu Hu, Jiazhen Hu, Pengqi Sun, Guohao Zhu, Jialong Sun, Qiyou Tao, Taiping Yuan, Gen Li, Guoliang Pang, Xiaohua Huang\",\"doi\":\"10.3390/jmse12091571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to accurately estimate the distribution of Trachinotus ovatus in marine cages, a novel method was developed using omnidirectional scanning sonar and deep-learning techniques. This method involved differentiating water layers and clustering data layer by layer to achieve precise location estimation. The approach comprised two main components: fish identification and fish clustering. Firstly, omnidirectional scanning sonar was employed to perform spiral detection within marine cages, capturing fish image data. These images were then labeled to construct a training dataset for an enhanced CS-YOLOv8s model. After training, the CS-YOLOv8s model was used to identify and locate fish within the images. Secondly, the cages were divided into water layers with depth intervals of 40 cm. The identification coordinate data for each water layer were clustered using the DBSCAN method to generate location coordinates for the fish in each layer. Finally, the coordinate data from all water layers were consolidated to determine the overall distribution of fish within the cage. This method was shown, through multiple experimental results, to effectively estimate the distribution of Trachinotus ovatus in marine cages, closely matching the distributions detected manually.\",\"PeriodicalId\":16168,\"journal\":{\"name\":\"Journal of Marine Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/jmse12091571\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091571","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
A Method for Estimating the Distribution of Trachinotus ovatus in Marine Cages Based on Omnidirectional Scanning Sonar
In order to accurately estimate the distribution of Trachinotus ovatus in marine cages, a novel method was developed using omnidirectional scanning sonar and deep-learning techniques. This method involved differentiating water layers and clustering data layer by layer to achieve precise location estimation. The approach comprised two main components: fish identification and fish clustering. Firstly, omnidirectional scanning sonar was employed to perform spiral detection within marine cages, capturing fish image data. These images were then labeled to construct a training dataset for an enhanced CS-YOLOv8s model. After training, the CS-YOLOv8s model was used to identify and locate fish within the images. Secondly, the cages were divided into water layers with depth intervals of 40 cm. The identification coordinate data for each water layer were clustered using the DBSCAN method to generate location coordinates for the fish in each layer. Finally, the coordinate data from all water layers were consolidated to determine the overall distribution of fish within the cage. This method was shown, through multiple experimental results, to effectively estimate the distribution of Trachinotus ovatus in marine cages, closely matching the distributions detected manually.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.