{"title":"球藻不同形态细胞对紫外线-B 辐射的反应","authors":"Wei Wei, Jie Li, Caibi Lan, Junxiang Lai","doi":"10.3390/jmse12091619","DOIUrl":null,"url":null,"abstract":"Phaeocystis globosa is an important member of the plankton community and was considered to be a typical bloom-forming algae. Its life cycle is variable, comprising both solitary and colony cells. The growth process of P. globosa is vulnerable to UV-B radiation. However, the influence of UV-B on photosynthetic activity and the resulting programmed cell death (PCD) process is not entirely understood. Our findings demonstrated that Fv/Fm, rETRmax, Y(II) and α of solitary and colony cells were significantly decreased after UV-B treatment (p < 0.05). The colony cells showed a lower damage rate and higher repair rate than solitary cells (p < 0.05), suggesting that colony cells have better UV-B radiation resistance. After UV-B radiation, we found the characteristic markers of PCD-phosphatidylserine (PS) externalization and DNA fragmentation were discovered in the two cell morphologies, with increased caspase-3-like activity, proving the onset of PCD. In addition, the reactive oxygen species (ROS) content and antioxidant enzyme activities were examined. The results showed that, the ROS content went up, the solitary cells were significantly greater than colony cells under UV-B radiation (p < 0.001). In addition, the superoxide dismutase (SOD) and catalase (CAT) activities increased, and solitary cells always had significantly higher activity than colony cells (p < 0.05), but the changing trend in ROS content did not match the changes in CAT and SOD activities. This may have been due to the necrosis of solitary cells. The findings show that, besides PCD, solitary cells also developed necrosis under UV-B radiation. This study provides evidence that different morphological cells of marine microalgae present different reactions to UV-B radiation. It helps to further improve the knowledge of the environmental adaptation mechanism of P. globosa.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Responses of Different Morphological Cells of Phaeocystis globosa to UV-B Radiation\",\"authors\":\"Wei Wei, Jie Li, Caibi Lan, Junxiang Lai\",\"doi\":\"10.3390/jmse12091619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phaeocystis globosa is an important member of the plankton community and was considered to be a typical bloom-forming algae. Its life cycle is variable, comprising both solitary and colony cells. The growth process of P. globosa is vulnerable to UV-B radiation. However, the influence of UV-B on photosynthetic activity and the resulting programmed cell death (PCD) process is not entirely understood. Our findings demonstrated that Fv/Fm, rETRmax, Y(II) and α of solitary and colony cells were significantly decreased after UV-B treatment (p < 0.05). The colony cells showed a lower damage rate and higher repair rate than solitary cells (p < 0.05), suggesting that colony cells have better UV-B radiation resistance. After UV-B radiation, we found the characteristic markers of PCD-phosphatidylserine (PS) externalization and DNA fragmentation were discovered in the two cell morphologies, with increased caspase-3-like activity, proving the onset of PCD. In addition, the reactive oxygen species (ROS) content and antioxidant enzyme activities were examined. The results showed that, the ROS content went up, the solitary cells were significantly greater than colony cells under UV-B radiation (p < 0.001). In addition, the superoxide dismutase (SOD) and catalase (CAT) activities increased, and solitary cells always had significantly higher activity than colony cells (p < 0.05), but the changing trend in ROS content did not match the changes in CAT and SOD activities. This may have been due to the necrosis of solitary cells. The findings show that, besides PCD, solitary cells also developed necrosis under UV-B radiation. This study provides evidence that different morphological cells of marine microalgae present different reactions to UV-B radiation. It helps to further improve the knowledge of the environmental adaptation mechanism of P. globosa.\",\"PeriodicalId\":16168,\"journal\":{\"name\":\"Journal of Marine Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/jmse12091619\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091619","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Responses of Different Morphological Cells of Phaeocystis globosa to UV-B Radiation
Phaeocystis globosa is an important member of the plankton community and was considered to be a typical bloom-forming algae. Its life cycle is variable, comprising both solitary and colony cells. The growth process of P. globosa is vulnerable to UV-B radiation. However, the influence of UV-B on photosynthetic activity and the resulting programmed cell death (PCD) process is not entirely understood. Our findings demonstrated that Fv/Fm, rETRmax, Y(II) and α of solitary and colony cells were significantly decreased after UV-B treatment (p < 0.05). The colony cells showed a lower damage rate and higher repair rate than solitary cells (p < 0.05), suggesting that colony cells have better UV-B radiation resistance. After UV-B radiation, we found the characteristic markers of PCD-phosphatidylserine (PS) externalization and DNA fragmentation were discovered in the two cell morphologies, with increased caspase-3-like activity, proving the onset of PCD. In addition, the reactive oxygen species (ROS) content and antioxidant enzyme activities were examined. The results showed that, the ROS content went up, the solitary cells were significantly greater than colony cells under UV-B radiation (p < 0.001). In addition, the superoxide dismutase (SOD) and catalase (CAT) activities increased, and solitary cells always had significantly higher activity than colony cells (p < 0.05), but the changing trend in ROS content did not match the changes in CAT and SOD activities. This may have been due to the necrosis of solitary cells. The findings show that, besides PCD, solitary cells also developed necrosis under UV-B radiation. This study provides evidence that different morphological cells of marine microalgae present different reactions to UV-B radiation. It helps to further improve the knowledge of the environmental adaptation mechanism of P. globosa.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.