{"title":"带尖角和圆角的浸没式水平圆柱体上的高次谐波力特性","authors":"Hongfei Mao, Jinwen Zeng, Guanglin Wu, Hanqing Chen, Shuqin Zhang, Yuanting Yang, Qinru Yang","doi":"10.3390/jmse12091636","DOIUrl":null,"url":null,"abstract":"In this study, a two-phase flow numerical wave tank model based on the viscous flow theory was applied to conduct computational research on the interaction between waves and submerged horizontal cylinders. The research objective is to reveal the hydrodynamic characteristics of nonlinear loads on submerged horizontal cylinders with a focus on vortex effects. The influence of the sharp and round corners of cross-sections on the wave forces on cylinders was summarized. The reasons for the characteristics of the wave forces were explained by analyzing the flow field distribution around the cylinder and decomposing the wave forces into inertial and drag forces. This study found that under the various incident wave amplitudes, the section corner and aspect ratio have significant impacts on each frequency component of the horizontal and vertical wave forces. The distribution of the vorticity field shows that the vortex effects lead to the differences between the loads on the cylinder under different cross-sectional corners and aspect ratios. The characteristics of inertial forces and drag forces on the cylinders were given by comparing and analyzing the cases with different sectional sharp and round corners. The inertia and drag coefficients were obtained by solving Morison’s equation. Under various Kc and Re numbers, the maximum values of the inertia and drag coefficients obtained are significantly different from those for submerged cylinders under oscillatory flow action.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics of Higher Harmonic Forces on Submerged Horizontal Cylinders with Sharp and Round Corners\",\"authors\":\"Hongfei Mao, Jinwen Zeng, Guanglin Wu, Hanqing Chen, Shuqin Zhang, Yuanting Yang, Qinru Yang\",\"doi\":\"10.3390/jmse12091636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a two-phase flow numerical wave tank model based on the viscous flow theory was applied to conduct computational research on the interaction between waves and submerged horizontal cylinders. The research objective is to reveal the hydrodynamic characteristics of nonlinear loads on submerged horizontal cylinders with a focus on vortex effects. The influence of the sharp and round corners of cross-sections on the wave forces on cylinders was summarized. The reasons for the characteristics of the wave forces were explained by analyzing the flow field distribution around the cylinder and decomposing the wave forces into inertial and drag forces. This study found that under the various incident wave amplitudes, the section corner and aspect ratio have significant impacts on each frequency component of the horizontal and vertical wave forces. The distribution of the vorticity field shows that the vortex effects lead to the differences between the loads on the cylinder under different cross-sectional corners and aspect ratios. The characteristics of inertial forces and drag forces on the cylinders were given by comparing and analyzing the cases with different sectional sharp and round corners. The inertia and drag coefficients were obtained by solving Morison’s equation. Under various Kc and Re numbers, the maximum values of the inertia and drag coefficients obtained are significantly different from those for submerged cylinders under oscillatory flow action.\",\"PeriodicalId\":16168,\"journal\":{\"name\":\"Journal of Marine Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/jmse12091636\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091636","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
摘要
本研究采用基于粘性流理论的两相流数值波浪槽模型,对波浪与水下水平圆柱体之间的相互作用进行了计算研究。研究目的是揭示非线性载荷对水下水平圆柱体的流体力学特性,重点关注涡流效应。总结了横截面的尖角和圆角对圆柱体上波力的影响。通过分析圆柱体周围的流场分布,并将波力分解为惯性力和阻力,解释了波力特性的原因。研究发现,在不同的入射波幅下,截面角和长宽比对水平和垂直波力的各频率分量有显著影响。涡度场的分布表明,在不同的截面角和纵横比下,涡流效应导致了圆柱体上载荷的差异。通过比较和分析不同截面尖角和圆角的情况,给出了圆柱体上惯性力和阻力的特征。通过求解莫里森方程得到了惯性和阻力系数。在不同的 Kc 和 Re 数值下,所获得的惯性力和阻力系数的最大值与摆动流作用下的浸没式圆柱体的惯性力和阻力系数有明显不同。
Characteristics of Higher Harmonic Forces on Submerged Horizontal Cylinders with Sharp and Round Corners
In this study, a two-phase flow numerical wave tank model based on the viscous flow theory was applied to conduct computational research on the interaction between waves and submerged horizontal cylinders. The research objective is to reveal the hydrodynamic characteristics of nonlinear loads on submerged horizontal cylinders with a focus on vortex effects. The influence of the sharp and round corners of cross-sections on the wave forces on cylinders was summarized. The reasons for the characteristics of the wave forces were explained by analyzing the flow field distribution around the cylinder and decomposing the wave forces into inertial and drag forces. This study found that under the various incident wave amplitudes, the section corner and aspect ratio have significant impacts on each frequency component of the horizontal and vertical wave forces. The distribution of the vorticity field shows that the vortex effects lead to the differences between the loads on the cylinder under different cross-sectional corners and aspect ratios. The characteristics of inertial forces and drag forces on the cylinders were given by comparing and analyzing the cases with different sectional sharp and round corners. The inertia and drag coefficients were obtained by solving Morison’s equation. Under various Kc and Re numbers, the maximum values of the inertia and drag coefficients obtained are significantly different from those for submerged cylinders under oscillatory flow action.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.