评估氯化钠和碳酸铁离子对一甘醇增强水溶液中气体水合物形成的影响

IF 1.8 4区 工程技术 Q3 Chemical Engineering
Carys M. Bloomfield, Chi M. Phan, Malik M. Mohammed, Ammar Al Helal
{"title":"评估氯化钠和碳酸铁离子对一甘醇增强水溶液中气体水合物形成的影响","authors":"Carys M. Bloomfield, Chi M. Phan, Malik M. Mohammed, Ammar Al Helal","doi":"10.1002/apj.3139","DOIUrl":null,"url":null,"abstract":"The management and prevention of hydrates are crucial for the gas industry. This study delves into the intricate challenges associated with gas hydrate formation, with a specific focus on investigating the impact of corrosion by‐products on prevention strategies. Employing a distinctive methodology, the sapphire pressure–volume temperature (PVT) cell was utilized. Experimental tests were conducted using sodium chloride (NaCl) concentrations of 1% and 3% to simulate brine solution levels at the wellhead, incorporating 3% filtrate and unfiltered iron carbonate (FeCO<jats:sub>3</jats:sub>) as corrosion products associated with the production process. The 1% and 3% salt concentrations were chosen to encompass a broad range of temperature depressions, reflecting common industry standards for simulating realistic environmental conditions. PVT cell test conditions ranged from 80 to 200 bar, with increments of 40 bar. The experiments investigate the effects of common pipeline salts on a monoethylene glycol (MEG)/water mixture in the presence of methane gas at typical industry high‐pressure conditions. The investigation uncovers that the introduction of salts to water, methane, and MEG solutions serves as a hydrate inhibitor, with inhibitory effects directly correlated to salt concentration. While generally hydrate growth inhibition is beneficial in natural gas pipelines, the findings indicate that elevated salt concentrations and lower pressure conditions contribute to the formation of larger hydrates, heightening the risk of surface adhesion and potentially introducing complications in piping equipment, despite the decreased temperature at which these hydrates form due to the inhibitory effects of the salts. In particular, the mixed condition of 3% NaCl and 3% FeCO<jats:sub>3</jats:sub> (filtered) has the strongest effect. Examination of hydrate formation temperature and macroscopic observations suggests that the existence of substantial precipitates, as evidenced in the unfiltered FeCO<jats:sub>3</jats:sub> sapphire cell experiment, may have the potential to enhance hydrate growth.","PeriodicalId":8852,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the impact of sodium chloride and iron carbonate ions on gas hydrate formation in Monoethylene Glycol‐enhanced aqueous solutions\",\"authors\":\"Carys M. Bloomfield, Chi M. Phan, Malik M. Mohammed, Ammar Al Helal\",\"doi\":\"10.1002/apj.3139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The management and prevention of hydrates are crucial for the gas industry. This study delves into the intricate challenges associated with gas hydrate formation, with a specific focus on investigating the impact of corrosion by‐products on prevention strategies. Employing a distinctive methodology, the sapphire pressure–volume temperature (PVT) cell was utilized. Experimental tests were conducted using sodium chloride (NaCl) concentrations of 1% and 3% to simulate brine solution levels at the wellhead, incorporating 3% filtrate and unfiltered iron carbonate (FeCO<jats:sub>3</jats:sub>) as corrosion products associated with the production process. The 1% and 3% salt concentrations were chosen to encompass a broad range of temperature depressions, reflecting common industry standards for simulating realistic environmental conditions. PVT cell test conditions ranged from 80 to 200 bar, with increments of 40 bar. The experiments investigate the effects of common pipeline salts on a monoethylene glycol (MEG)/water mixture in the presence of methane gas at typical industry high‐pressure conditions. The investigation uncovers that the introduction of salts to water, methane, and MEG solutions serves as a hydrate inhibitor, with inhibitory effects directly correlated to salt concentration. While generally hydrate growth inhibition is beneficial in natural gas pipelines, the findings indicate that elevated salt concentrations and lower pressure conditions contribute to the formation of larger hydrates, heightening the risk of surface adhesion and potentially introducing complications in piping equipment, despite the decreased temperature at which these hydrates form due to the inhibitory effects of the salts. In particular, the mixed condition of 3% NaCl and 3% FeCO<jats:sub>3</jats:sub> (filtered) has the strongest effect. Examination of hydrate formation temperature and macroscopic observations suggests that the existence of substantial precipitates, as evidenced in the unfiltered FeCO<jats:sub>3</jats:sub> sapphire cell experiment, may have the potential to enhance hydrate growth.\",\"PeriodicalId\":8852,\"journal\":{\"name\":\"Asia-Pacific Journal of Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/apj.3139\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/apj.3139","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

水合物的管理和预防对天然气行业至关重要。本研究深入探讨了与天然气水合物形成相关的复杂挑战,重点研究了腐蚀副产品对预防策略的影响。研究采用了一种独特的方法,即蓝宝石压力-体积-温度(PVT)电池。实验测试使用 1%和 3%浓度的氯化钠(NaCl)来模拟井口的盐水溶液水平,并将 3%的滤液和未过滤的碳酸铁(FeCO3)作为与生产过程相关的腐蚀产物。选择 1% 和 3% 的盐浓度是为了涵盖广泛的温度洼地,反映模拟现实环境条件的通用行业标准。PVT 电池测试条件从 80 巴到 200 巴不等,增量为 40 巴。实验研究了在典型的工业高压条件下,有甲烷气体存在时,常见的管道盐对单甘醇 (MEG) / 水混合物的影响。调查发现,在水、甲烷和 MEG 溶液中引入盐类可作为水合物抑制剂,其抑制效果与盐浓度直接相关。虽然在天然气管道中抑制水合物生长通常是有益的,但研究结果表明,盐浓度升高和压力降低会形成较大的水合物,增加表面粘附的风险,并可能给管道设备带来复杂问题,尽管由于盐的抑制作用,这些水合物形成时的温度降低了。其中,3% NaCl 和 3%FeCO3(过滤)的混合条件效果最强。对水合物形成温度和宏观观察的研究表明,大量沉淀物的存在(如未过滤的 FeCO3 蓝宝石电池实验所证明的那样)可能会促进水合物的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating the impact of sodium chloride and iron carbonate ions on gas hydrate formation in Monoethylene Glycol‐enhanced aqueous solutions
The management and prevention of hydrates are crucial for the gas industry. This study delves into the intricate challenges associated with gas hydrate formation, with a specific focus on investigating the impact of corrosion by‐products on prevention strategies. Employing a distinctive methodology, the sapphire pressure–volume temperature (PVT) cell was utilized. Experimental tests were conducted using sodium chloride (NaCl) concentrations of 1% and 3% to simulate brine solution levels at the wellhead, incorporating 3% filtrate and unfiltered iron carbonate (FeCO3) as corrosion products associated with the production process. The 1% and 3% salt concentrations were chosen to encompass a broad range of temperature depressions, reflecting common industry standards for simulating realistic environmental conditions. PVT cell test conditions ranged from 80 to 200 bar, with increments of 40 bar. The experiments investigate the effects of common pipeline salts on a monoethylene glycol (MEG)/water mixture in the presence of methane gas at typical industry high‐pressure conditions. The investigation uncovers that the introduction of salts to water, methane, and MEG solutions serves as a hydrate inhibitor, with inhibitory effects directly correlated to salt concentration. While generally hydrate growth inhibition is beneficial in natural gas pipelines, the findings indicate that elevated salt concentrations and lower pressure conditions contribute to the formation of larger hydrates, heightening the risk of surface adhesion and potentially introducing complications in piping equipment, despite the decreased temperature at which these hydrates form due to the inhibitory effects of the salts. In particular, the mixed condition of 3% NaCl and 3% FeCO3 (filtered) has the strongest effect. Examination of hydrate formation temperature and macroscopic observations suggests that the existence of substantial precipitates, as evidenced in the unfiltered FeCO3 sapphire cell experiment, may have the potential to enhance hydrate growth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asia-Pacific Journal of Chemical Engineering
Asia-Pacific Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
3.50
自引率
11.10%
发文量
111
审稿时长
2.8 months
期刊介绍: Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration. Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信