{"title":"利用超声波改进掺钴 TiO2 催化剂的合成及其在酸性紫 7 降解中的应用","authors":"Prerna Pandey, Parag R. Gogate","doi":"10.1002/apj.3142","DOIUrl":null,"url":null,"abstract":"The current investigation deals with improving the synthesis of cobalt‐doped titanium dioxide (TiO<jats:sub>2</jats:sub>) utilizing both ultrasound‐assisted and conventional impregnation methods with an objective to obtain better catalyst characteristics. The impacts of process parameters such as sonication power, irradiation time, duty cycle and precursor doping on the catalyst characteristics have been analysed to optimize the catalyst characteristics including its particle size. Different characterization methods, including XRD, BET, TEM and FTIR have been used to compare the catalysts produced using both approaches under optimal conditions. Catalyst synthesized at 1 mol% doping, 90 min as irradiation time, 80 W as sonication power and 50% as duty cycle showed a minimum particle size of 231 nm and surface area of 9.2 m<jats:sup>2</jats:sup>/g. The catalyst obtained utilizing the ultrasound‐assisted technique was obtained in significantly lesser time (90 min) compared to the catalyst obtained using the conventional approach (24 h). Photocatalytic oxidation tests carried out to determine the activity also showed that the Co‐doped TiO<jats:sub>2</jats:sub> catalyst obtained ultrasonically showed maximum activity for degradation of Acid Violet 7 in conjunction with H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> at the optimal loading.","PeriodicalId":8852,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved synthesis of cobalt‐doped TiO2 catalyst using ultrasound and subsequent application for Acid Violet 7 degradation\",\"authors\":\"Prerna Pandey, Parag R. Gogate\",\"doi\":\"10.1002/apj.3142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current investigation deals with improving the synthesis of cobalt‐doped titanium dioxide (TiO<jats:sub>2</jats:sub>) utilizing both ultrasound‐assisted and conventional impregnation methods with an objective to obtain better catalyst characteristics. The impacts of process parameters such as sonication power, irradiation time, duty cycle and precursor doping on the catalyst characteristics have been analysed to optimize the catalyst characteristics including its particle size. Different characterization methods, including XRD, BET, TEM and FTIR have been used to compare the catalysts produced using both approaches under optimal conditions. Catalyst synthesized at 1 mol% doping, 90 min as irradiation time, 80 W as sonication power and 50% as duty cycle showed a minimum particle size of 231 nm and surface area of 9.2 m<jats:sup>2</jats:sup>/g. The catalyst obtained utilizing the ultrasound‐assisted technique was obtained in significantly lesser time (90 min) compared to the catalyst obtained using the conventional approach (24 h). Photocatalytic oxidation tests carried out to determine the activity also showed that the Co‐doped TiO<jats:sub>2</jats:sub> catalyst obtained ultrasonically showed maximum activity for degradation of Acid Violet 7 in conjunction with H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> at the optimal loading.\",\"PeriodicalId\":8852,\"journal\":{\"name\":\"Asia-Pacific Journal of Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/apj.3142\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/apj.3142","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Improved synthesis of cobalt‐doped TiO2 catalyst using ultrasound and subsequent application for Acid Violet 7 degradation
The current investigation deals with improving the synthesis of cobalt‐doped titanium dioxide (TiO2) utilizing both ultrasound‐assisted and conventional impregnation methods with an objective to obtain better catalyst characteristics. The impacts of process parameters such as sonication power, irradiation time, duty cycle and precursor doping on the catalyst characteristics have been analysed to optimize the catalyst characteristics including its particle size. Different characterization methods, including XRD, BET, TEM and FTIR have been used to compare the catalysts produced using both approaches under optimal conditions. Catalyst synthesized at 1 mol% doping, 90 min as irradiation time, 80 W as sonication power and 50% as duty cycle showed a minimum particle size of 231 nm and surface area of 9.2 m2/g. The catalyst obtained utilizing the ultrasound‐assisted technique was obtained in significantly lesser time (90 min) compared to the catalyst obtained using the conventional approach (24 h). Photocatalytic oxidation tests carried out to determine the activity also showed that the Co‐doped TiO2 catalyst obtained ultrasonically showed maximum activity for degradation of Acid Violet 7 in conjunction with H2O2 at the optimal loading.
期刊介绍:
Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration.
Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).