Bhumarapu Venkateswarlu, Sang Woo Joo, Nallagundla Nagendra, Ahmed Sayed M Metwally
{"title":"指数拉伸表面上太阳辐射电磁[Cu + TiO2/H2O]h 混合纳米流体流动的数值研究","authors":"Bhumarapu Venkateswarlu, Sang Woo Joo, Nallagundla Nagendra, Ahmed Sayed M Metwally","doi":"10.1002/apj.3154","DOIUrl":null,"url":null,"abstract":"The idea of a hybrid nanofluid (HNF) has sparked curiosity among many scientists because of its ability to enhance thermal characteristics, leading to elevated rates of heat transfer (HT). These HNFs are utilized in various engineering and industrial settings, such as electronics cooling, manufacturing, naval structures, biomedical applications, and drug delivery. The current study investigates the analysis of irreversibility in EMHD [Cu + TiO<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>O]<jats:sup>h</jats:sup> flow over a stretching sheet with radiation and viscous dissipation. The governing PDEs are converted into ODEs using similarity variables. These ODEs are then solved using the RKF method along with a shooting technique. The effects of different physical parameters on the velocity and temperature distributions of the HNF, as well as on HT and surface drag force, are thoroughly examined and presented in graphs. The velocity of [TiO<jats:sub>2</jats:sub>/water]<jats:sup>n</jats:sup> flow declines as the magnetic field strength rises, but it rises with greater electric field values for [Cu + TiO<jats:sub>2</jats:sub>/water]<jats:sup>h</jats:sup>. The temperature of the [Cu + TiO<jats:sub>2</jats:sub>/water]<jats:sup>h</jats:sup> increases with elevated levels of radiation, Eckert number, and heat generation strength. Higher Reynolds and Brinkman numbers result in a rise in entropy generation for [Cu + TiO<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>O]<jats:sup>h</jats:sup>, whereas the Bejan number decreases to the same extent. The HT rate in [Cu + TiO<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>O]<jats:sup>h</jats:sup> increases by 3.05% as the Eckert number rises, while it drops by 4.01% when there is significant thermal radiation. Skin friction reduces by 3.21% in [TiO<jats:sub>2</jats:sub>/water]<jats:sup>n</jats:sup> as the electric field strength increases, whereas it decreases by 4.05% with an increase in magnetic field strength. These discoveries offer valuable perspectives on furthering the utilization of HNFs in engineering and industrial operations.","PeriodicalId":8852,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of electromagnetic [Cu + TiO2/H2O]h hybrid nanofluid flow with solar radiation over an exponential stretching surface\",\"authors\":\"Bhumarapu Venkateswarlu, Sang Woo Joo, Nallagundla Nagendra, Ahmed Sayed M Metwally\",\"doi\":\"10.1002/apj.3154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The idea of a hybrid nanofluid (HNF) has sparked curiosity among many scientists because of its ability to enhance thermal characteristics, leading to elevated rates of heat transfer (HT). These HNFs are utilized in various engineering and industrial settings, such as electronics cooling, manufacturing, naval structures, biomedical applications, and drug delivery. The current study investigates the analysis of irreversibility in EMHD [Cu + TiO<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>O]<jats:sup>h</jats:sup> flow over a stretching sheet with radiation and viscous dissipation. The governing PDEs are converted into ODEs using similarity variables. These ODEs are then solved using the RKF method along with a shooting technique. The effects of different physical parameters on the velocity and temperature distributions of the HNF, as well as on HT and surface drag force, are thoroughly examined and presented in graphs. The velocity of [TiO<jats:sub>2</jats:sub>/water]<jats:sup>n</jats:sup> flow declines as the magnetic field strength rises, but it rises with greater electric field values for [Cu + TiO<jats:sub>2</jats:sub>/water]<jats:sup>h</jats:sup>. The temperature of the [Cu + TiO<jats:sub>2</jats:sub>/water]<jats:sup>h</jats:sup> increases with elevated levels of radiation, Eckert number, and heat generation strength. Higher Reynolds and Brinkman numbers result in a rise in entropy generation for [Cu + TiO<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>O]<jats:sup>h</jats:sup>, whereas the Bejan number decreases to the same extent. The HT rate in [Cu + TiO<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>O]<jats:sup>h</jats:sup> increases by 3.05% as the Eckert number rises, while it drops by 4.01% when there is significant thermal radiation. Skin friction reduces by 3.21% in [TiO<jats:sub>2</jats:sub>/water]<jats:sup>n</jats:sup> as the electric field strength increases, whereas it decreases by 4.05% with an increase in magnetic field strength. These discoveries offer valuable perspectives on furthering the utilization of HNFs in engineering and industrial operations.\",\"PeriodicalId\":8852,\"journal\":{\"name\":\"Asia-Pacific Journal of Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/apj.3154\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/apj.3154","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Numerical investigation of electromagnetic [Cu + TiO2/H2O]h hybrid nanofluid flow with solar radiation over an exponential stretching surface
The idea of a hybrid nanofluid (HNF) has sparked curiosity among many scientists because of its ability to enhance thermal characteristics, leading to elevated rates of heat transfer (HT). These HNFs are utilized in various engineering and industrial settings, such as electronics cooling, manufacturing, naval structures, biomedical applications, and drug delivery. The current study investigates the analysis of irreversibility in EMHD [Cu + TiO2/H2O]h flow over a stretching sheet with radiation and viscous dissipation. The governing PDEs are converted into ODEs using similarity variables. These ODEs are then solved using the RKF method along with a shooting technique. The effects of different physical parameters on the velocity and temperature distributions of the HNF, as well as on HT and surface drag force, are thoroughly examined and presented in graphs. The velocity of [TiO2/water]n flow declines as the magnetic field strength rises, but it rises with greater electric field values for [Cu + TiO2/water]h. The temperature of the [Cu + TiO2/water]h increases with elevated levels of radiation, Eckert number, and heat generation strength. Higher Reynolds and Brinkman numbers result in a rise in entropy generation for [Cu + TiO2/H2O]h, whereas the Bejan number decreases to the same extent. The HT rate in [Cu + TiO2/H2O]h increases by 3.05% as the Eckert number rises, while it drops by 4.01% when there is significant thermal radiation. Skin friction reduces by 3.21% in [TiO2/water]n as the electric field strength increases, whereas it decreases by 4.05% with an increase in magnetic field strength. These discoveries offer valuable perspectives on furthering the utilization of HNFs in engineering and industrial operations.
期刊介绍:
Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration.
Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).