指数拉伸表面上太阳辐射电磁[Cu + TiO2/H2O]h 混合纳米流体流动的数值研究

IF 1.8 4区 工程技术 Q3 Chemical Engineering
Bhumarapu Venkateswarlu, Sang Woo Joo, Nallagundla Nagendra, Ahmed Sayed M Metwally
{"title":"指数拉伸表面上太阳辐射电磁[Cu + TiO2/H2O]h 混合纳米流体流动的数值研究","authors":"Bhumarapu Venkateswarlu, Sang Woo Joo, Nallagundla Nagendra, Ahmed Sayed M Metwally","doi":"10.1002/apj.3154","DOIUrl":null,"url":null,"abstract":"The idea of a hybrid nanofluid (HNF) has sparked curiosity among many scientists because of its ability to enhance thermal characteristics, leading to elevated rates of heat transfer (HT). These HNFs are utilized in various engineering and industrial settings, such as electronics cooling, manufacturing, naval structures, biomedical applications, and drug delivery. The current study investigates the analysis of irreversibility in EMHD [Cu + TiO<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>O]<jats:sup>h</jats:sup> flow over a stretching sheet with radiation and viscous dissipation. The governing PDEs are converted into ODEs using similarity variables. These ODEs are then solved using the RKF method along with a shooting technique. The effects of different physical parameters on the velocity and temperature distributions of the HNF, as well as on HT and surface drag force, are thoroughly examined and presented in graphs. The velocity of [TiO<jats:sub>2</jats:sub>/water]<jats:sup>n</jats:sup> flow declines as the magnetic field strength rises, but it rises with greater electric field values for [Cu + TiO<jats:sub>2</jats:sub>/water]<jats:sup>h</jats:sup>. The temperature of the [Cu + TiO<jats:sub>2</jats:sub>/water]<jats:sup>h</jats:sup> increases with elevated levels of radiation, Eckert number, and heat generation strength. Higher Reynolds and Brinkman numbers result in a rise in entropy generation for [Cu + TiO<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>O]<jats:sup>h</jats:sup>, whereas the Bejan number decreases to the same extent. The HT rate in [Cu + TiO<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>O]<jats:sup>h</jats:sup> increases by 3.05% as the Eckert number rises, while it drops by 4.01% when there is significant thermal radiation. Skin friction reduces by 3.21% in [TiO<jats:sub>2</jats:sub>/water]<jats:sup>n</jats:sup> as the electric field strength increases, whereas it decreases by 4.05% with an increase in magnetic field strength. These discoveries offer valuable perspectives on furthering the utilization of HNFs in engineering and industrial operations.","PeriodicalId":8852,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of electromagnetic [Cu + TiO2/H2O]h hybrid nanofluid flow with solar radiation over an exponential stretching surface\",\"authors\":\"Bhumarapu Venkateswarlu, Sang Woo Joo, Nallagundla Nagendra, Ahmed Sayed M Metwally\",\"doi\":\"10.1002/apj.3154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The idea of a hybrid nanofluid (HNF) has sparked curiosity among many scientists because of its ability to enhance thermal characteristics, leading to elevated rates of heat transfer (HT). These HNFs are utilized in various engineering and industrial settings, such as electronics cooling, manufacturing, naval structures, biomedical applications, and drug delivery. The current study investigates the analysis of irreversibility in EMHD [Cu + TiO<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>O]<jats:sup>h</jats:sup> flow over a stretching sheet with radiation and viscous dissipation. The governing PDEs are converted into ODEs using similarity variables. These ODEs are then solved using the RKF method along with a shooting technique. The effects of different physical parameters on the velocity and temperature distributions of the HNF, as well as on HT and surface drag force, are thoroughly examined and presented in graphs. The velocity of [TiO<jats:sub>2</jats:sub>/water]<jats:sup>n</jats:sup> flow declines as the magnetic field strength rises, but it rises with greater electric field values for [Cu + TiO<jats:sub>2</jats:sub>/water]<jats:sup>h</jats:sup>. The temperature of the [Cu + TiO<jats:sub>2</jats:sub>/water]<jats:sup>h</jats:sup> increases with elevated levels of radiation, Eckert number, and heat generation strength. Higher Reynolds and Brinkman numbers result in a rise in entropy generation for [Cu + TiO<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>O]<jats:sup>h</jats:sup>, whereas the Bejan number decreases to the same extent. The HT rate in [Cu + TiO<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>O]<jats:sup>h</jats:sup> increases by 3.05% as the Eckert number rises, while it drops by 4.01% when there is significant thermal radiation. Skin friction reduces by 3.21% in [TiO<jats:sub>2</jats:sub>/water]<jats:sup>n</jats:sup> as the electric field strength increases, whereas it decreases by 4.05% with an increase in magnetic field strength. These discoveries offer valuable perspectives on furthering the utilization of HNFs in engineering and industrial operations.\",\"PeriodicalId\":8852,\"journal\":{\"name\":\"Asia-Pacific Journal of Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/apj.3154\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/apj.3154","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

混合纳米流体(HNF)的概念引发了许多科学家的好奇,因为它能够增强热特性,从而提高热传导率(HT)。这些 HNF 可用于各种工程和工业领域,如电子冷却、制造、舰船结构、生物医学应用和药物输送。目前的研究调查了 EMHD [Cu + TiO2/H2O]h 在具有辐射和粘性耗散的拉伸片上流动的不可逆性分析。利用相似变量将支配 PDE 转换为 ODE。然后使用 RKF 方法和射击技术对这些 ODEs 进行求解。对不同物理参数对 HNF 的速度和温度分布以及 HT 和表面阻力的影响进行了深入研究,并用图形表示出来。TiO2/water]n 的流速随着磁场强度的增加而降低,但对于 [Cu + TiO2/water]h 而言,随着电场值的增加而升高。Cu + TiO2/水]h的温度随着辐射、埃克特数和发热强度的升高而升高。雷诺数和布林克曼数越高,[Cu + TiO2/H2O]h 的熵产生量越大,而贝扬数的下降幅度相同。随着埃克特数的升高,[Cu + TiO2/H2O]h中的热效率增加了3.05%,而当存在大量热辐射时,热效率下降了4.01%。随着电场强度的增加,[TiO2/水]n 中的皮肤摩擦降低了 3.21%,而随着磁场强度的增加,皮肤摩擦降低了 4.05%。这些发现为在工程和工业操作中进一步利用 HNFs 提供了宝贵的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical investigation of electromagnetic [Cu + TiO2/H2O]h hybrid nanofluid flow with solar radiation over an exponential stretching surface
The idea of a hybrid nanofluid (HNF) has sparked curiosity among many scientists because of its ability to enhance thermal characteristics, leading to elevated rates of heat transfer (HT). These HNFs are utilized in various engineering and industrial settings, such as electronics cooling, manufacturing, naval structures, biomedical applications, and drug delivery. The current study investigates the analysis of irreversibility in EMHD [Cu + TiO2/H2O]h flow over a stretching sheet with radiation and viscous dissipation. The governing PDEs are converted into ODEs using similarity variables. These ODEs are then solved using the RKF method along with a shooting technique. The effects of different physical parameters on the velocity and temperature distributions of the HNF, as well as on HT and surface drag force, are thoroughly examined and presented in graphs. The velocity of [TiO2/water]n flow declines as the magnetic field strength rises, but it rises with greater electric field values for [Cu + TiO2/water]h. The temperature of the [Cu + TiO2/water]h increases with elevated levels of radiation, Eckert number, and heat generation strength. Higher Reynolds and Brinkman numbers result in a rise in entropy generation for [Cu + TiO2/H2O]h, whereas the Bejan number decreases to the same extent. The HT rate in [Cu + TiO2/H2O]h increases by 3.05% as the Eckert number rises, while it drops by 4.01% when there is significant thermal radiation. Skin friction reduces by 3.21% in [TiO2/water]n as the electric field strength increases, whereas it decreases by 4.05% with an increase in magnetic field strength. These discoveries offer valuable perspectives on furthering the utilization of HNFs in engineering and industrial operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asia-Pacific Journal of Chemical Engineering
Asia-Pacific Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
3.50
自引率
11.10%
发文量
111
审稿时长
2.8 months
期刊介绍: Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration. Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信