一类离散算子定义的曲线:近似结果与应用

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Rosario Corso, Gabriele Gucciardi
{"title":"一类离散算子定义的曲线:近似结果与应用","authors":"Rosario Corso, Gabriele Gucciardi","doi":"10.1002/mma.10441","DOIUrl":null,"url":null,"abstract":"In approximation theory, classical discrete operators, like generalized sampling, Szász‐Mirak'jan, Baskakov, and Bernstein operators, have been extensively studied for scalar functions. In this paper, we look at the approximation of curves by a class of discrete operators, and we exhibit graphical examples concerning several cases. The topic has useful implications about the computer graphics and the image processing: We discuss applications on the approximation and the reconstruction of curves in images.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curves defined by a class of discrete operators: Approximation result and applications\",\"authors\":\"Rosario Corso, Gabriele Gucciardi\",\"doi\":\"10.1002/mma.10441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In approximation theory, classical discrete operators, like generalized sampling, Szász‐Mirak'jan, Baskakov, and Bernstein operators, have been extensively studied for scalar functions. In this paper, we look at the approximation of curves by a class of discrete operators, and we exhibit graphical examples concerning several cases. The topic has useful implications about the computer graphics and the image processing: We discuss applications on the approximation and the reconstruction of curves in images.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在近似理论中,对标量函数的经典离散算子,如广义采样算子、Szász-Mirak'jan 算子、Baskakov 算子和 Bernstein 算子进行了广泛研究。在本文中,我们研究了一类离散算子对曲线的逼近,并展示了有关几种情况的图形示例。该主题对计算机制图和图像处理具有重要意义:我们将讨论图像中曲线逼近和重建的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curves defined by a class of discrete operators: Approximation result and applications
In approximation theory, classical discrete operators, like generalized sampling, Szász‐Mirak'jan, Baskakov, and Bernstein operators, have been extensively studied for scalar functions. In this paper, we look at the approximation of curves by a class of discrete operators, and we exhibit graphical examples concerning several cases. The topic has useful implications about the computer graphics and the image processing: We discuss applications on the approximation and the reconstruction of curves in images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信