Deyu Lin , Huanxin Wang , Xin Lei , Weidong Min , Chenguang Yao , Yuan Zhong , Yong Liang Guan
{"title":"DSU-GAN:基于生成式对抗网络的稳健正面人脸识别方法","authors":"Deyu Lin , Huanxin Wang , Xin Lei , Weidong Min , Chenguang Yao , Yuan Zhong , Yong Liang Guan","doi":"10.1016/j.cviu.2024.104128","DOIUrl":null,"url":null,"abstract":"<div><div>Face recognition technology is widely used in different areas, such as entrance guard, payment <em>etc</em>. However, little attention has been given to non-positive faces recognition, especially model training and the quality of the generated images. To this end, a novel robust frontal face recognition approach based on generative adversarial network (DSU-GAN) is proposed in this paper. A mechanism of consistency loss is presented in deformable convolution proposed in the generator-encoder to avoid additional computational overhead and the problem of overfitting. In addition, a self-attention mechanism is presented in generator–encoder to avoid information overloading and construct the long-term dependencies at the pixel level. To balance the capability between the generator and discriminator, a novelf discriminator architecture based U-Net is proposed. Finally, the single-way discriminator is improved through a new up-sampling module. Experiment results demonstrate that our proposal achieves an average Rank-1 recognition rate of 95.14% on the Multi-PIE face dataset in dealing with the multi-pose. In addition, it is proven that our proposal has achieved outstanding performance in recent benchmarks conducted on both IJB-A and IJB-C.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DSU-GAN: A robust frontal face recognition approach based on generative adversarial network\",\"authors\":\"Deyu Lin , Huanxin Wang , Xin Lei , Weidong Min , Chenguang Yao , Yuan Zhong , Yong Liang Guan\",\"doi\":\"10.1016/j.cviu.2024.104128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Face recognition technology is widely used in different areas, such as entrance guard, payment <em>etc</em>. However, little attention has been given to non-positive faces recognition, especially model training and the quality of the generated images. To this end, a novel robust frontal face recognition approach based on generative adversarial network (DSU-GAN) is proposed in this paper. A mechanism of consistency loss is presented in deformable convolution proposed in the generator-encoder to avoid additional computational overhead and the problem of overfitting. In addition, a self-attention mechanism is presented in generator–encoder to avoid information overloading and construct the long-term dependencies at the pixel level. To balance the capability between the generator and discriminator, a novelf discriminator architecture based U-Net is proposed. Finally, the single-way discriminator is improved through a new up-sampling module. Experiment results demonstrate that our proposal achieves an average Rank-1 recognition rate of 95.14% on the Multi-PIE face dataset in dealing with the multi-pose. In addition, it is proven that our proposal has achieved outstanding performance in recent benchmarks conducted on both IJB-A and IJB-C.</div></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077314224002091\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224002091","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
DSU-GAN: A robust frontal face recognition approach based on generative adversarial network
Face recognition technology is widely used in different areas, such as entrance guard, payment etc. However, little attention has been given to non-positive faces recognition, especially model training and the quality of the generated images. To this end, a novel robust frontal face recognition approach based on generative adversarial network (DSU-GAN) is proposed in this paper. A mechanism of consistency loss is presented in deformable convolution proposed in the generator-encoder to avoid additional computational overhead and the problem of overfitting. In addition, a self-attention mechanism is presented in generator–encoder to avoid information overloading and construct the long-term dependencies at the pixel level. To balance the capability between the generator and discriminator, a novelf discriminator architecture based U-Net is proposed. Finally, the single-way discriminator is improved through a new up-sampling module. Experiment results demonstrate that our proposal achieves an average Rank-1 recognition rate of 95.14% on the Multi-PIE face dataset in dealing with the multi-pose. In addition, it is proven that our proposal has achieved outstanding performance in recent benchmarks conducted on both IJB-A and IJB-C.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems