{"title":"4,7-二羟基香豆素衍生物对产生 ROS 的酶的抑制潜力和直接清除 HOO-/o2- 自由基的活性--一项全面的动力学 DFT 研究。","authors":"Žiko Milanović,Svetlana Jeremić,Marko Antonijević,Dušan Dimić,Đura Nakarada,Edina Avdović,Zoran Marković","doi":"10.1080/10715762.2024.2400674","DOIUrl":null,"url":null,"abstract":"This study examined the antiradical activity of three synthesized coumarin derivatives: (E)-3-(1-((2-hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A1-OH), (E)-3-(1-((3-hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A2-OH), and (E)-3-(1-((4-hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A3-OH) against HOO•/O2•- radical species. The investigation included electron spin resonance (ESR) measurements and a DFT kinetic study. Thermodynamic and kinetic parameters of antiradical mechanisms-Formal Hydrogen Atom Transfer (f-HAT), Radical Adduct Formation (RAF), Sequential Proton Loss followed by Electron Transfer (SPLET), and Single-Electron Transfer followed by Proton Transfer (SET-PT)-were evaluated using the Quantum Mechanics-based test for Overall Free Radical Scavenging Activity (QM-ORSA) under physiological conditions. ESR results indicated antiradical activity decreased in the sequence A1-OH (58.7%) > A2-OH (57.5%) > A3-OH (53.1%). Kinetic analysis revealed the f-HAT mechanism dominated HOO• inactivation. A newly formulated Sequential Proton Loss followed by Radical Adduct Formation (SPL-RAF) mechanism described interactions with O2•-. The activity toward O2•- was A2-OH (1.26 × 106 M-1s-1) > A3-OH (7.71 × 105 M-1s-1) > A1-OH (4.22 × 105 M-1s-1). Molecular docking and dynamics studies tested inhibitory capability against enzymes producing reactive species: Lipoxygenase (LOX), Myeloperoxidase (MPO), NAD(P)H oxidase (NOX), and Xanthine Oxidase (XOD). Affinity to enzymes decreased in the order: XOD > LOX > NOX > MPO.","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The inhibitory potential of 4,7-dihydroxycoumarin derivatives on ROS-producing enzymes and direct HOO•/o2• - radical scavenging activity - a comprehensive kinetic DFT study.\",\"authors\":\"Žiko Milanović,Svetlana Jeremić,Marko Antonijević,Dušan Dimić,Đura Nakarada,Edina Avdović,Zoran Marković\",\"doi\":\"10.1080/10715762.2024.2400674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examined the antiradical activity of three synthesized coumarin derivatives: (E)-3-(1-((2-hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A1-OH), (E)-3-(1-((3-hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A2-OH), and (E)-3-(1-((4-hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A3-OH) against HOO•/O2•- radical species. The investigation included electron spin resonance (ESR) measurements and a DFT kinetic study. Thermodynamic and kinetic parameters of antiradical mechanisms-Formal Hydrogen Atom Transfer (f-HAT), Radical Adduct Formation (RAF), Sequential Proton Loss followed by Electron Transfer (SPLET), and Single-Electron Transfer followed by Proton Transfer (SET-PT)-were evaluated using the Quantum Mechanics-based test for Overall Free Radical Scavenging Activity (QM-ORSA) under physiological conditions. ESR results indicated antiradical activity decreased in the sequence A1-OH (58.7%) > A2-OH (57.5%) > A3-OH (53.1%). Kinetic analysis revealed the f-HAT mechanism dominated HOO• inactivation. A newly formulated Sequential Proton Loss followed by Radical Adduct Formation (SPL-RAF) mechanism described interactions with O2•-. The activity toward O2•- was A2-OH (1.26 × 106 M-1s-1) > A3-OH (7.71 × 105 M-1s-1) > A1-OH (4.22 × 105 M-1s-1). Molecular docking and dynamics studies tested inhibitory capability against enzymes producing reactive species: Lipoxygenase (LOX), Myeloperoxidase (MPO), NAD(P)H oxidase (NOX), and Xanthine Oxidase (XOD). Affinity to enzymes decreased in the order: XOD > LOX > NOX > MPO.\",\"PeriodicalId\":12411,\"journal\":{\"name\":\"Free Radical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10715762.2024.2400674\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2024.2400674","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The inhibitory potential of 4,7-dihydroxycoumarin derivatives on ROS-producing enzymes and direct HOO•/o2• - radical scavenging activity - a comprehensive kinetic DFT study.
This study examined the antiradical activity of three synthesized coumarin derivatives: (E)-3-(1-((2-hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A1-OH), (E)-3-(1-((3-hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A2-OH), and (E)-3-(1-((4-hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A3-OH) against HOO•/O2•- radical species. The investigation included electron spin resonance (ESR) measurements and a DFT kinetic study. Thermodynamic and kinetic parameters of antiradical mechanisms-Formal Hydrogen Atom Transfer (f-HAT), Radical Adduct Formation (RAF), Sequential Proton Loss followed by Electron Transfer (SPLET), and Single-Electron Transfer followed by Proton Transfer (SET-PT)-were evaluated using the Quantum Mechanics-based test for Overall Free Radical Scavenging Activity (QM-ORSA) under physiological conditions. ESR results indicated antiradical activity decreased in the sequence A1-OH (58.7%) > A2-OH (57.5%) > A3-OH (53.1%). Kinetic analysis revealed the f-HAT mechanism dominated HOO• inactivation. A newly formulated Sequential Proton Loss followed by Radical Adduct Formation (SPL-RAF) mechanism described interactions with O2•-. The activity toward O2•- was A2-OH (1.26 × 106 M-1s-1) > A3-OH (7.71 × 105 M-1s-1) > A1-OH (4.22 × 105 M-1s-1). Molecular docking and dynamics studies tested inhibitory capability against enzymes producing reactive species: Lipoxygenase (LOX), Myeloperoxidase (MPO), NAD(P)H oxidase (NOX), and Xanthine Oxidase (XOD). Affinity to enzymes decreased in the order: XOD > LOX > NOX > MPO.
期刊介绍:
Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.