建造电化学流动反应器:用于从 TNT 到 2,2′,4,4′,6,6′-己硝基苯的脱氢氧化的静态混合和微电池

IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yu-qiu Wang, Yu-hui Dong, Ya-qi Qin, Ming Lu, Peng-cheng Wang
{"title":"建造电化学流动反应器:用于从 TNT 到 2,2′,4,4′,6,6′-己硝基苯的脱氢氧化的静态混合和微电池","authors":"Yu-qiu Wang, Yu-hui Dong, Ya-qi Qin, Ming Lu, Peng-cheng Wang","doi":"10.1016/j.enmf.2024.08.001","DOIUrl":null,"url":null,"abstract":"From the electrochemical synthesis in beakers to the application of electrochemical reactors, flow electrosynthesis has become more and more prominent in the field of organic synthesis. But for multi-feed reactions, the problem of efficient mixing in the electrochemical reactor remains unresolved. A novel electrolytic cell was devised to facilitate thorough mixing of various feedstocks during electrochemical oxidation. With structural optimization guided by computational fluid dynamics (CFD) simulations, the choice of reaction channels was deliberated upon, alongside an elucidation of the mixing mechanism. The reactor's performance was assessed based on both mixing efficiency and electrochemical oxidation capability with the synthesis of 2,2′,4,4′,6,6′-hexanitrostilbene (HNS) serving as a model. The high efficiency of the electrochemical reactor was verified by the enhanced yield, purity, and faradaic efficiency of HNS. It is environmentally friendly and easy to realize industrial production.","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of electrochemical flow reactor: Static mixing and micro-cell for dehydrogenation oxidation from TNT to 2,2′,4,4′,6,6′-hexanitrostilbene\",\"authors\":\"Yu-qiu Wang, Yu-hui Dong, Ya-qi Qin, Ming Lu, Peng-cheng Wang\",\"doi\":\"10.1016/j.enmf.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From the electrochemical synthesis in beakers to the application of electrochemical reactors, flow electrosynthesis has become more and more prominent in the field of organic synthesis. But for multi-feed reactions, the problem of efficient mixing in the electrochemical reactor remains unresolved. A novel electrolytic cell was devised to facilitate thorough mixing of various feedstocks during electrochemical oxidation. With structural optimization guided by computational fluid dynamics (CFD) simulations, the choice of reaction channels was deliberated upon, alongside an elucidation of the mixing mechanism. The reactor's performance was assessed based on both mixing efficiency and electrochemical oxidation capability with the synthesis of 2,2′,4,4′,6,6′-hexanitrostilbene (HNS) serving as a model. The high efficiency of the electrochemical reactor was verified by the enhanced yield, purity, and faradaic efficiency of HNS. It is environmentally friendly and easy to realize industrial production.\",\"PeriodicalId\":34595,\"journal\":{\"name\":\"Energetic Materials Frontiers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energetic Materials Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.enmf.2024.08.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetic Materials Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.enmf.2024.08.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从烧杯中的电化学合成到电化学反应器的应用,流动电合成在有机合成领域的地位日益突出。但对于多进料反应,电化学反应器中的高效混合问题仍未得到解决。为了在电化学氧化过程中促进各种原料的充分混合,我们设计了一种新型电解池。在计算流体动力学(CFD)模拟的指导下进行了结构优化,对反应通道的选择进行了讨论,同时阐明了混合机制。以合成 2,2′,4,4′,6,6′-己硝基苯二乙烯(HNS)为模型,根据混合效率和电化学氧化能力对反应器的性能进行了评估。通过提高 HNS 的产率、纯度和远红外效率,验证了该电化学反应器的高效性。该反应器对环境友好,易于实现工业化生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of electrochemical flow reactor: Static mixing and micro-cell for dehydrogenation oxidation from TNT to 2,2′,4,4′,6,6′-hexanitrostilbene
From the electrochemical synthesis in beakers to the application of electrochemical reactors, flow electrosynthesis has become more and more prominent in the field of organic synthesis. But for multi-feed reactions, the problem of efficient mixing in the electrochemical reactor remains unresolved. A novel electrolytic cell was devised to facilitate thorough mixing of various feedstocks during electrochemical oxidation. With structural optimization guided by computational fluid dynamics (CFD) simulations, the choice of reaction channels was deliberated upon, alongside an elucidation of the mixing mechanism. The reactor's performance was assessed based on both mixing efficiency and electrochemical oxidation capability with the synthesis of 2,2′,4,4′,6,6′-hexanitrostilbene (HNS) serving as a model. The high efficiency of the electrochemical reactor was verified by the enhanced yield, purity, and faradaic efficiency of HNS. It is environmentally friendly and easy to realize industrial production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energetic Materials Frontiers
Energetic Materials Frontiers Materials Science-Materials Science (miscellaneous)
CiteScore
6.90
自引率
0.00%
发文量
42
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信