{"title":"使用 ER2209 填充线的线弧快速成型技术制造的双相不锈钢的微结构演变、机械和电化学性能","authors":"Sanjeevi Prakash Karunanithi, Rajesh Kannan Arasappan, Siva Shanmugam Nallathambi","doi":"10.1002/srin.202400425","DOIUrl":null,"url":null,"abstract":"<p>This study examines the dependent relationship between microstructure, mechanical properties, and corrosion performance on the wire arc additive manufactured (WAAM) ER2209 duplex stainless steel (DSS). DSS is renowned for its corrosion resistance and mechanical strength, making it favorable for various applications. This study uses the gas metal arc welding (GMAW)- based WAAM technique to fabricate the wall structure using ER2209 DSS filler wire. Fine, equiaxed dendrites are formed along the build direction, with the austenite phase exceeding 70% due to the repeated heating and slow cooling inherent to WAAM process. X-ray diffraction (XRD) confirms no brittle intermetallic phases. The results shows that varying austenite-ferrite fractions significantly influences the anisotropy in mechanical properties between build and deposit directions. Along the build direction, the varying phase fraction causes difference in hardness of 19.59 HV<sub>0.3</sub> and tensile strength of 20 MPa. The maximum tensile strength (787.08 MPa) is observed in the deposit direction, with a 52 MPa difference between the build and deposit directions. Tafel and EIS measurements indicated that WAAM samples corrosion resistance was almost close to wrought 2205 DSS. This study highlights WAAM's potential for defect-free DSS parts and suggests post-heat treatment to optimize microstructure and mechanical properties.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"95 12","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructural Evolution, Mechanical and Electrochemical Performance of Duplex Stainless Steel Fabricated by Wire Arc Additive Manufacturing with ER2209 Filler Wire\",\"authors\":\"Sanjeevi Prakash Karunanithi, Rajesh Kannan Arasappan, Siva Shanmugam Nallathambi\",\"doi\":\"10.1002/srin.202400425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study examines the dependent relationship between microstructure, mechanical properties, and corrosion performance on the wire arc additive manufactured (WAAM) ER2209 duplex stainless steel (DSS). DSS is renowned for its corrosion resistance and mechanical strength, making it favorable for various applications. This study uses the gas metal arc welding (GMAW)- based WAAM technique to fabricate the wall structure using ER2209 DSS filler wire. Fine, equiaxed dendrites are formed along the build direction, with the austenite phase exceeding 70% due to the repeated heating and slow cooling inherent to WAAM process. X-ray diffraction (XRD) confirms no brittle intermetallic phases. The results shows that varying austenite-ferrite fractions significantly influences the anisotropy in mechanical properties between build and deposit directions. Along the build direction, the varying phase fraction causes difference in hardness of 19.59 HV<sub>0.3</sub> and tensile strength of 20 MPa. The maximum tensile strength (787.08 MPa) is observed in the deposit direction, with a 52 MPa difference between the build and deposit directions. Tafel and EIS measurements indicated that WAAM samples corrosion resistance was almost close to wrought 2205 DSS. This study highlights WAAM's potential for defect-free DSS parts and suggests post-heat treatment to optimize microstructure and mechanical properties.</p>\",\"PeriodicalId\":21929,\"journal\":{\"name\":\"steel research international\",\"volume\":\"95 12\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"steel research international\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400425\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400425","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Microstructural Evolution, Mechanical and Electrochemical Performance of Duplex Stainless Steel Fabricated by Wire Arc Additive Manufacturing with ER2209 Filler Wire
This study examines the dependent relationship between microstructure, mechanical properties, and corrosion performance on the wire arc additive manufactured (WAAM) ER2209 duplex stainless steel (DSS). DSS is renowned for its corrosion resistance and mechanical strength, making it favorable for various applications. This study uses the gas metal arc welding (GMAW)- based WAAM technique to fabricate the wall structure using ER2209 DSS filler wire. Fine, equiaxed dendrites are formed along the build direction, with the austenite phase exceeding 70% due to the repeated heating and slow cooling inherent to WAAM process. X-ray diffraction (XRD) confirms no brittle intermetallic phases. The results shows that varying austenite-ferrite fractions significantly influences the anisotropy in mechanical properties between build and deposit directions. Along the build direction, the varying phase fraction causes difference in hardness of 19.59 HV0.3 and tensile strength of 20 MPa. The maximum tensile strength (787.08 MPa) is observed in the deposit direction, with a 52 MPa difference between the build and deposit directions. Tafel and EIS measurements indicated that WAAM samples corrosion resistance was almost close to wrought 2205 DSS. This study highlights WAAM's potential for defect-free DSS parts and suggests post-heat treatment to optimize microstructure and mechanical properties.
期刊介绍:
steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags.
steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International.
Hot Topics:
-Steels for Automotive Applications
-High-strength Steels
-Sustainable steelmaking
-Interstitially Alloyed Steels
-Electromagnetic Processing of Metals
-High Speed Forming