45CrNiMoVA 马氏体高级高强度钢氢气诱发裂纹的实验和断面研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yunlong Li, Xiaodong Liu
{"title":"45CrNiMoVA 马氏体高级高强度钢氢气诱发裂纹的实验和断面研究","authors":"Yunlong Li, Xiaodong Liu","doi":"10.1002/srin.202400369","DOIUrl":null,"url":null,"abstract":"Hydrogen‐induced cracking (HIC) in high‐strength 45CrNiMoVA steel is investigated using smooth and notched cylindrical specimens by performing uniaxial tensile tests. Specimens with different notch geometries are used to analyze the interacting effects of the stress concentration factor and HIC micromechanism. The results show that hydrogen charging reduces the elongation at fracture and the ultimate tensile strength of smooth tensile specimens. The microscopic fracture mode changes from ductile dimples with some quasicleavage fracture without hydrogen to a mixture of brittle quasicleavage and intergranular cracking with hydrogen. For notched specimens with a lower notch root radius, significant stress concentration occurs at the notch root, which enriches hydrogen in these highly stressed regions. This causes a lower notch tensile strength and greater susceptibility to hydrogen embrittlement. Microfracture observations show that the area fraction of the intergranular cracking surface increases gradually, and the brittle zone moves farther away from the notch root upon decreasing the notch root radius, causing the embrittlement index to remain high. These results will help determine the applicability of existing steel for hydrogen service and also provide guidance for developing new high‐strength martensitic steels that can resist hydrogen embrittlement.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Fractographic Study of the Hydrogen‐Induced Cracking of 45CrNiMoVA Martensitic Advanced High‐Strength Steel\",\"authors\":\"Yunlong Li, Xiaodong Liu\",\"doi\":\"10.1002/srin.202400369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogen‐induced cracking (HIC) in high‐strength 45CrNiMoVA steel is investigated using smooth and notched cylindrical specimens by performing uniaxial tensile tests. Specimens with different notch geometries are used to analyze the interacting effects of the stress concentration factor and HIC micromechanism. The results show that hydrogen charging reduces the elongation at fracture and the ultimate tensile strength of smooth tensile specimens. The microscopic fracture mode changes from ductile dimples with some quasicleavage fracture without hydrogen to a mixture of brittle quasicleavage and intergranular cracking with hydrogen. For notched specimens with a lower notch root radius, significant stress concentration occurs at the notch root, which enriches hydrogen in these highly stressed regions. This causes a lower notch tensile strength and greater susceptibility to hydrogen embrittlement. Microfracture observations show that the area fraction of the intergranular cracking surface increases gradually, and the brittle zone moves farther away from the notch root upon decreasing the notch root radius, causing the embrittlement index to remain high. These results will help determine the applicability of existing steel for hydrogen service and also provide guidance for developing new high‐strength martensitic steels that can resist hydrogen embrittlement.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/srin.202400369\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/srin.202400369","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过单轴拉伸试验,使用光滑和有缺口的圆柱形试样研究了高强度 45CrNiMoVA 钢的氢致开裂(HIC)。采用不同缺口几何形状的试样来分析应力集中因子和 HIC 微观机制的相互作用。结果表明,充氢降低了光滑拉伸试样的断裂伸长率和极限拉伸强度。微观断裂模式从无氢情况下的韧性凹陷和一些类泡状断裂转变为有氢情况下的脆性类泡状断裂和晶间开裂的混合断裂。对于缺口根部半径较小的缺口试样,缺口根部会出现明显的应力集中,从而在这些高应力区域富集氢气。这导致缺口抗拉强度降低,更容易发生氢脆。显微断裂观察结果表明,晶间开裂面的面积分数逐渐增加,脆性区随着缺口根部半径的减小而远离缺口根部,导致脆化指数保持在较高水平。这些结果将有助于确定现有钢材在氢工况下的适用性,并为开发可抵抗氢脆的新型高强度马氏体钢提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and Fractographic Study of the Hydrogen‐Induced Cracking of 45CrNiMoVA Martensitic Advanced High‐Strength Steel
Hydrogen‐induced cracking (HIC) in high‐strength 45CrNiMoVA steel is investigated using smooth and notched cylindrical specimens by performing uniaxial tensile tests. Specimens with different notch geometries are used to analyze the interacting effects of the stress concentration factor and HIC micromechanism. The results show that hydrogen charging reduces the elongation at fracture and the ultimate tensile strength of smooth tensile specimens. The microscopic fracture mode changes from ductile dimples with some quasicleavage fracture without hydrogen to a mixture of brittle quasicleavage and intergranular cracking with hydrogen. For notched specimens with a lower notch root radius, significant stress concentration occurs at the notch root, which enriches hydrogen in these highly stressed regions. This causes a lower notch tensile strength and greater susceptibility to hydrogen embrittlement. Microfracture observations show that the area fraction of the intergranular cracking surface increases gradually, and the brittle zone moves farther away from the notch root upon decreasing the notch root radius, causing the embrittlement index to remain high. These results will help determine the applicability of existing steel for hydrogen service and also provide guidance for developing new high‐strength martensitic steels that can resist hydrogen embrittlement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信