Alfonso Nájera-Bastida, Rodolfo Dávila Morales, Javier Guarneros-Guarneros, Jafeth Rodríguez-Ávila, Oscar Joaquín Solís-Marcial
{"title":"槽底抑制剂设计对非金属夹杂物浮选效率的影响:水模型和雷诺应力模型的数学模拟","authors":"Alfonso Nájera-Bastida, Rodolfo Dávila Morales, Javier Guarneros-Guarneros, Jafeth Rodríguez-Ávila, Oscar Joaquín Solís-Marcial","doi":"10.1002/srin.202400087","DOIUrl":null,"url":null,"abstract":"<p>Numerical fluid simulations using the Reynolds stress model and water model experiments are conducted to test different designs of tundish turbulence inhibitors (A, B, C, D, and E) for their effectiveness in removing nonmetallic inclusions from steel. The results reveal a unique flow pattern, with a mushroom-like shape forming around the entry jet. The acceleration of small eddies within this mushroom is a significant factor in inclusion removal. This discovery has practical implications for the steel industry, leading to a longer residence time in the entry jet mushroom and improved inclusion flotation performance. Additionally, the turbulent kinematic viscosity and Reynolds stress fields in the flow mushroom influence the tracer's local dispersion rate and the interactions of the inclusions in this region. These findings are further validated using a tundish water model to track the dynamics of amine particles injected into the ladle shroud, enhancing their practical relevance.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"95 12","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the Tundish Inhibitor Design on the Flotation Efficiency of Nonmetallic Inclusions: Water Modeling and Mathematical Simulations by the Reynolds Stress Model\",\"authors\":\"Alfonso Nájera-Bastida, Rodolfo Dávila Morales, Javier Guarneros-Guarneros, Jafeth Rodríguez-Ávila, Oscar Joaquín Solís-Marcial\",\"doi\":\"10.1002/srin.202400087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Numerical fluid simulations using the Reynolds stress model and water model experiments are conducted to test different designs of tundish turbulence inhibitors (A, B, C, D, and E) for their effectiveness in removing nonmetallic inclusions from steel. The results reveal a unique flow pattern, with a mushroom-like shape forming around the entry jet. The acceleration of small eddies within this mushroom is a significant factor in inclusion removal. This discovery has practical implications for the steel industry, leading to a longer residence time in the entry jet mushroom and improved inclusion flotation performance. Additionally, the turbulent kinematic viscosity and Reynolds stress fields in the flow mushroom influence the tracer's local dispersion rate and the interactions of the inclusions in this region. These findings are further validated using a tundish water model to track the dynamics of amine particles injected into the ladle shroud, enhancing their practical relevance.</p>\",\"PeriodicalId\":21929,\"journal\":{\"name\":\"steel research international\",\"volume\":\"95 12\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"steel research international\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400087\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400087","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Effect of the Tundish Inhibitor Design on the Flotation Efficiency of Nonmetallic Inclusions: Water Modeling and Mathematical Simulations by the Reynolds Stress Model
Numerical fluid simulations using the Reynolds stress model and water model experiments are conducted to test different designs of tundish turbulence inhibitors (A, B, C, D, and E) for their effectiveness in removing nonmetallic inclusions from steel. The results reveal a unique flow pattern, with a mushroom-like shape forming around the entry jet. The acceleration of small eddies within this mushroom is a significant factor in inclusion removal. This discovery has practical implications for the steel industry, leading to a longer residence time in the entry jet mushroom and improved inclusion flotation performance. Additionally, the turbulent kinematic viscosity and Reynolds stress fields in the flow mushroom influence the tracer's local dispersion rate and the interactions of the inclusions in this region. These findings are further validated using a tundish water model to track the dynamics of amine particles injected into the ladle shroud, enhancing their practical relevance.
期刊介绍:
steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags.
steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International.
Hot Topics:
-Steels for Automotive Applications
-High-strength Steels
-Sustainable steelmaking
-Interstitially Alloyed Steels
-Electromagnetic Processing of Metals
-High Speed Forming