{"title":"铬对高强度耐热不锈钢微观结构和强度-韧性的影响","authors":"Hongxiao Chi, Liping Pian, Jinbo Gu, Yong Sun, Xuedong Pang, Zhenfei Xin, Dangshen Ma","doi":"10.1002/srin.202400412","DOIUrl":null,"url":null,"abstract":"<p>The effect of Cr content on the microstructure and mechanical properties of CSS-42L steel is investigated by X-ray diffractometer, scanning electron microscopy, and transmission electron microscopy. The results show that increasing Cr from 8% to 13.5% significantly improves toughness and ductility while moderately decreasing the strength. The tensile strength, fracture toughness (K<sub>IC</sub>), and impact absorbing energy of 13.5% Cr steel are 1.8 GPa, 88.6 MPa√m, and 58.5 J, respectively. 13.5%Cr steel possesses larger grain size and fewer undissolved M<sub>6</sub>C carbides than 8%Cr and10%Cr steels, which is attributed to that Cr addition increases Cr content in the (Mo,Cr)<sub>6</sub>C, reducing the dissolution temperature and ability to inhibit grain growth. Cr significantly decreases the Martensite start (Ms) temperature from 263 to 53.1 °C and increases the retained austenite from 0.3 to 13.19 vol%. Cr increases the number density and diameter of nanoscale M<sub>2</sub>C, which is attributed to Cr promoting the dissolution of Mo and increasing the nucleation rate. Meanwhile, the higher Cr content also increases the growth rate of the carbides along the diameter direction. Cr addition reduces the contribution from coherency strengthening caused by decreased lattice misfit and increased the contribution of Orowan dislocation looping resulted from higher volume fraction and size of M<sub>2</sub>C.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"95 12","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Cr on the Microstructure and Strength-Toughness of High-Strength and Heat-Resistant Stainless Steel\",\"authors\":\"Hongxiao Chi, Liping Pian, Jinbo Gu, Yong Sun, Xuedong Pang, Zhenfei Xin, Dangshen Ma\",\"doi\":\"10.1002/srin.202400412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The effect of Cr content on the microstructure and mechanical properties of CSS-42L steel is investigated by X-ray diffractometer, scanning electron microscopy, and transmission electron microscopy. The results show that increasing Cr from 8% to 13.5% significantly improves toughness and ductility while moderately decreasing the strength. The tensile strength, fracture toughness (K<sub>IC</sub>), and impact absorbing energy of 13.5% Cr steel are 1.8 GPa, 88.6 MPa√m, and 58.5 J, respectively. 13.5%Cr steel possesses larger grain size and fewer undissolved M<sub>6</sub>C carbides than 8%Cr and10%Cr steels, which is attributed to that Cr addition increases Cr content in the (Mo,Cr)<sub>6</sub>C, reducing the dissolution temperature and ability to inhibit grain growth. Cr significantly decreases the Martensite start (Ms) temperature from 263 to 53.1 °C and increases the retained austenite from 0.3 to 13.19 vol%. Cr increases the number density and diameter of nanoscale M<sub>2</sub>C, which is attributed to Cr promoting the dissolution of Mo and increasing the nucleation rate. Meanwhile, the higher Cr content also increases the growth rate of the carbides along the diameter direction. Cr addition reduces the contribution from coherency strengthening caused by decreased lattice misfit and increased the contribution of Orowan dislocation looping resulted from higher volume fraction and size of M<sub>2</sub>C.</p>\",\"PeriodicalId\":21929,\"journal\":{\"name\":\"steel research international\",\"volume\":\"95 12\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"steel research international\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400412\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400412","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Effect of Cr on the Microstructure and Strength-Toughness of High-Strength and Heat-Resistant Stainless Steel
The effect of Cr content on the microstructure and mechanical properties of CSS-42L steel is investigated by X-ray diffractometer, scanning electron microscopy, and transmission electron microscopy. The results show that increasing Cr from 8% to 13.5% significantly improves toughness and ductility while moderately decreasing the strength. The tensile strength, fracture toughness (KIC), and impact absorbing energy of 13.5% Cr steel are 1.8 GPa, 88.6 MPa√m, and 58.5 J, respectively. 13.5%Cr steel possesses larger grain size and fewer undissolved M6C carbides than 8%Cr and10%Cr steels, which is attributed to that Cr addition increases Cr content in the (Mo,Cr)6C, reducing the dissolution temperature and ability to inhibit grain growth. Cr significantly decreases the Martensite start (Ms) temperature from 263 to 53.1 °C and increases the retained austenite from 0.3 to 13.19 vol%. Cr increases the number density and diameter of nanoscale M2C, which is attributed to Cr promoting the dissolution of Mo and increasing the nucleation rate. Meanwhile, the higher Cr content also increases the growth rate of the carbides along the diameter direction. Cr addition reduces the contribution from coherency strengthening caused by decreased lattice misfit and increased the contribution of Orowan dislocation looping resulted from higher volume fraction and size of M2C.
期刊介绍:
steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags.
steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International.
Hot Topics:
-Steels for Automotive Applications
-High-strength Steels
-Sustainable steelmaking
-Interstitially Alloyed Steels
-Electromagnetic Processing of Metals
-High Speed Forming