球磨机衬板锻造过程中的显微结构演变预测

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hongchao Ji, Wei Liu, Weimin Liu, Xiaomin Huang, Changzhe Song, Shengqiang Liu
{"title":"球磨机衬板锻造过程中的显微结构演变预测","authors":"Hongchao Ji, Wei Liu, Weimin Liu, Xiaomin Huang, Changzhe Song, Shengqiang Liu","doi":"10.1002/srin.202400479","DOIUrl":null,"url":null,"abstract":"The liner is affixed to the inner side of the ball mill cylinder to protect the cylinder. Through isothermal compression experiments, Arrhenius constitutive models, peak strain models, critical strain models, dynamic recrystallization dynamic models, and grain size models suitable for the forging process of Mn–Cr–Ni–Mo steel used in ball mill liners were established. By utilizing Deform software, a 3D thermo‐force‐structure coupling model for the hot forging process of ball mill liners was constructed, and the volume fraction of dynamic recrystallization and average grain size during forging was predicted. The response surface model was employed to investigate how process parameters interacted with each other and affected microstructure uniformity in ball mill liners. After optimization, the optimal parameters were determined: initial forging temperature at 1200 °C, forging speed at 30 mm s<jats:sup>−1</jats:sup>, and friction coefficient at 0.3. Subsequently, a hot forging experiment on ball mill liners was conducted using these optimized parameters; samples were analyzed through backscattered electron diffraction device experiments and microscopic tissue observations. Results demonstrated that microstructural changes observed during actual forging processes aligned with numerical simulation results—thus verifying both the accuracy of the Mn–Cr–Ni–Mo steel material model and numerical simulation method.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Microstructure Evolution in Ball Mill Liner Forging Process\",\"authors\":\"Hongchao Ji, Wei Liu, Weimin Liu, Xiaomin Huang, Changzhe Song, Shengqiang Liu\",\"doi\":\"10.1002/srin.202400479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The liner is affixed to the inner side of the ball mill cylinder to protect the cylinder. Through isothermal compression experiments, Arrhenius constitutive models, peak strain models, critical strain models, dynamic recrystallization dynamic models, and grain size models suitable for the forging process of Mn–Cr–Ni–Mo steel used in ball mill liners were established. By utilizing Deform software, a 3D thermo‐force‐structure coupling model for the hot forging process of ball mill liners was constructed, and the volume fraction of dynamic recrystallization and average grain size during forging was predicted. The response surface model was employed to investigate how process parameters interacted with each other and affected microstructure uniformity in ball mill liners. After optimization, the optimal parameters were determined: initial forging temperature at 1200 °C, forging speed at 30 mm s<jats:sup>−1</jats:sup>, and friction coefficient at 0.3. Subsequently, a hot forging experiment on ball mill liners was conducted using these optimized parameters; samples were analyzed through backscattered electron diffraction device experiments and microscopic tissue observations. Results demonstrated that microstructural changes observed during actual forging processes aligned with numerical simulation results—thus verifying both the accuracy of the Mn–Cr–Ni–Mo steel material model and numerical simulation method.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/srin.202400479\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/srin.202400479","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

衬板固定在球磨机筒体内侧,以保护筒体。通过等温压缩实验,建立了适用于球磨机衬板用锰铬镍钼钢锻造工艺的阿伦尼斯构成模型、峰值应变模型、临界应变模型、动态再结晶动态模型和晶粒尺寸模型。利用 Deform 软件构建了球磨机衬板热锻过程的三维热力-结构耦合模型,并预测了锻造过程中动态再结晶的体积分数和平均晶粒尺寸。采用响应面模型研究了工艺参数如何相互作用并影响球磨机衬板的微观结构均匀性。经过优化,确定了最佳参数:初始锻造温度为 1200 °C,锻造速度为 30 mm s-1,摩擦系数为 0.3。随后,利用这些优化参数对球磨机衬板进行了热锻实验,并通过背散射电子衍射装置实验和显微组织观察对样品进行了分析。结果表明,在实际锻造过程中观察到的微观结构变化与数值模拟结果一致,从而验证了 Mn-Cr-Ni-Mo 钢材料模型和数值模拟方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Microstructure Evolution in Ball Mill Liner Forging Process
The liner is affixed to the inner side of the ball mill cylinder to protect the cylinder. Through isothermal compression experiments, Arrhenius constitutive models, peak strain models, critical strain models, dynamic recrystallization dynamic models, and grain size models suitable for the forging process of Mn–Cr–Ni–Mo steel used in ball mill liners were established. By utilizing Deform software, a 3D thermo‐force‐structure coupling model for the hot forging process of ball mill liners was constructed, and the volume fraction of dynamic recrystallization and average grain size during forging was predicted. The response surface model was employed to investigate how process parameters interacted with each other and affected microstructure uniformity in ball mill liners. After optimization, the optimal parameters were determined: initial forging temperature at 1200 °C, forging speed at 30 mm s−1, and friction coefficient at 0.3. Subsequently, a hot forging experiment on ball mill liners was conducted using these optimized parameters; samples were analyzed through backscattered electron diffraction device experiments and microscopic tissue observations. Results demonstrated that microstructural changes observed during actual forging processes aligned with numerical simulation results—thus verifying both the accuracy of the Mn–Cr–Ni–Mo steel material model and numerical simulation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信